Np mrd loader

Record Information
Version2.0
Created at2024-09-12 00:21:43 UTC
Updated at2024-09-12 00:21:43 UTC
NP-MRD IDNP0339941
Secondary Accession NumbersNone
Natural Product Identification
Common Namepropanoyl-CoA
DescriptionPropanoyl-CoA belongs to the class of organic compounds known as acyl coas. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. propanoyl-CoA was first documented in 2009 (PMID: 18820024). Based on a literature review a significant number of articles have been published on propanoyl-CoA (PMID: 36031136) (PMID: 34447362) (PMID: 33040522) (PMID: 31536953) (PMID: 30721738) (PMID: 27272952).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC24H36N7O17P3S
Average Mass819.5700 Da
Monoisotopic Mass819.11232 Da
IUPAC Name3-hydroxy-2,2-dimethyl-3-[(2-{[2-(propanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propyl ({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methyl phosphonato}oxy)phosphonate
Traditional Name3-hydroxy-2,2-dimethyl-3-[(2-{[2-(propanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propyl {[5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methyl phosphonato}oxyphosphonate
CAS Registry NumberNot Available
SMILES
CCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OCC1OC(C(O)C1OP([O-])([O-])=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1/C24H40N7O17P3S/c1-4-15(33)52-8-7-26-14(32)5-6-27-22(36)19(35)24(2,3)10-45-51(42,43)48-50(40,41)44-9-13-18(47-49(37,38)39)17(34)23(46-13)31-12-30-16-20(25)28-11-29-21(16)31/h11-13,17-19,23,34-35H,4-10H2,1-3H3,(H,26,32)(H,27,36)(H,40,41)(H,42,43)(H2,25,28,29)(H2,37,38,39)/p-4
InChI KeyQAQREVBBADEHPA-UHFFFAOYNA-J
Experimental Spectra
Not Available
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of OriginNot Available
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as acyl coas. These are organic compounds containing a coenzyme A substructure linked to an acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentAcyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Ribonucleoside 3'-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • N-substituted imidazole
  • Alkyl phosphate
  • Organic phosphoric acid derivative
  • N-acyl-amine
  • Monosaccharide
  • Pyrimidine
  • Fatty amide
  • Phosphoric acid ester
  • Imidolactam
  • Tetrahydrofuran
  • Imidazole
  • Heteroaromatic compound
  • Azole
  • Thiocarboxylic acid ester
  • Carbothioic s-ester
  • Amino acid or derivatives
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Thiocarboxylic acid or derivatives
  • Sulfenyl compound
  • Organoheterocyclic compound
  • Azacycle
  • Carboxylic acid derivative
  • Oxacycle
  • Alcohol
  • Organic oxygen compound
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Carbonyl group
  • Primary amine
  • Organic oxide
  • Amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic anion
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-5.4ChemAxon
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.89ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area374.95 ŲChemAxon
Rotatable Bond Count21ChemAxon
Refractivity172.35 m³·mol⁻¹ChemAxon
Polarizability73.11 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkPropionyl-CoA
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Zheng Y, Wang P, Yang X, Zhao L, Ren L, Li J: Metagenomics insight into bioaugmentation mechanism of Propionibacterium acidipropionici during anaerobic acidification of kitchen waste. Bioresour Technol. 2022 Oct;362:127843. doi: 10.1016/j.biortech.2022.127843. Epub 2022 Aug 27. [PubMed:36031136 ]
  2. Isaac A, Francis B, Amann RI, Amin SA: Tight Adherence (Tad) Pilus Genes Indicate Putative Niche Differentiation in Phytoplankton Bloom Associated Rhodobacterales. Front Microbiol. 2021 Aug 10;12:718297. doi: 10.3389/fmicb.2021.718297. eCollection 2021. [PubMed:34447362 ]
  3. Stirling AJ, Gilbert SE, Conner M, Mallette E, Kimber MS, Seah SYK: A Key Glycine in Bacterial Steroid-Degrading Acyl-CoA Dehydrogenases Allows Flavin-Ring Repositioning and Modulates Substrate Side Chain Specificity. Biochemistry. 2020 Oct 27;59(42):4081-4092. doi: 10.1021/acs.biochem.0c00568. Epub 2020 Oct 11. [PubMed:33040522 ]
  4. Yevglevskis M, Nathubhai A, Wadda K, Lee GL, Al-Rawi S, Jiao T, Mitchell PJ, James TD, Threadgill MD, Woodman TJ, Lloyd MD: Novel 2-arylthiopropanoyl-CoA inhibitors of alpha-methylacyl-CoA racemase 1A (AMACR; P504S) as potential anti-prostate cancer agents. Bioorg Chem. 2019 Nov;92:103263. doi: 10.1016/j.bioorg.2019.103263. Epub 2019 Sep 7. [PubMed:31536953 ]
  5. Thiel A, Rumbeli R, Mair P, Yeman H, Beilstein P: 3-NOP: ADME studies in rats and ruminating animals. Food Chem Toxicol. 2019 Mar;125:528-539. doi: 10.1016/j.fct.2019.02.002. Epub 2019 Feb 2. [PubMed:30721738 ]
  6. Becker T, Ploss K, Boland W: Biosynthesis of isoxazolin-5-one and 3-nitropropanoic acid containing glucosides in juvenile Chrysomelina. Org Biomol Chem. 2016 Jul 14;14(26):6274-80. doi: 10.1039/c6ob00899b. Epub 2016 Jun 6. [PubMed:27272952 ]
  7. Liu S, Wang L, Zheng H, Xu Z, Roellig DM, Li N, Frace MA, Tang K, Arrowood MJ, Moss DM, Zhang L, Feng Y, Xiao L: Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics. 2016 Apr 30;17:316. doi: 10.1186/s12864-016-2632-3. [PubMed:27129308 ]
  8. Pal M, Khanal M, Marko R, Thirumalairajan S, Bearne SL: Rational design and synthesis of substrate-product analogue inhibitors of alpha-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis. Chem Commun (Camb). 2016 Feb 14;52(13):2740-3. doi: 10.1039/c5cc08096g. [PubMed:26759836 ]
  9. Jin Z, Berthiaume JM, Li Q, Henry F, Huang Z, Sadhukhan S, Gao P, Tochtrop GP, Puchowicz MA, Zhang GF: Catabolism of (2E)-4-hydroxy-2-nonenal via omega- and omega-1-oxidation stimulated by ketogenic diet. J Biol Chem. 2014 Nov 14;289(46):32327-32338. doi: 10.1074/jbc.M114.602458. Epub 2014 Oct 1. [PubMed:25274632 ]
  10. Takenaka S, Yoshida K, Tanaka K, Yoshida K: Molecular characterization of a novel N-acetyltransferase from Chryseobacterium sp. Appl Environ Microbiol. 2014 Mar;80(5):1770-6. doi: 10.1128/AEM.03449-13. Epub 2013 Dec 27. [PubMed:24375143 ]
  11. Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS: Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem. 2011 Dec 23;286(51):43668-43678. doi: 10.1074/jbc.M111.313643. Epub 2011 Nov 1. [PubMed:22045806 ]
  12. Kazakov AE, Rodionov DA, Alm E, Arkin AP, Dubchak I, Gelfand MS: Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. J Bacteriol. 2009 Jan;191(1):52-64. doi: 10.1128/JB.01175-08. Epub 2008 Sep 26. [PubMed:18820024 ]