| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2024-09-11 23:22:40 UTC |
|---|
| Updated at | 2024-09-11 23:22:40 UTC |
|---|
| NP-MRD ID | NP0339752 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | pelargonidin-3-O-rutinoside |
|---|
| Description | pelargonidin-3-O-rutinoside was first documented in 2021 (PMID: 34945655). Based on a literature review a significant number of articles have been published on pelargonidin-3-O-rutinoside (PMID: 37616166) (PMID: 37434140) (PMID: 37422177) (PMID: 37416877) (PMID: 36768164) (PMID: 35400462). |
|---|
| Structure | CC1OC(OCC2OC(OC3=CC4=C(C=C(O)C=C4[O-])[O+]=C3C3=CC=C(O)C=C3)C(O)C(O)C2O)C(O)C(O)C1O InChI=1/C27H30O14/c1-10-19(31)21(33)23(35)26(38-10)37-9-18-20(32)22(34)24(36)27(41-18)40-17-8-14-15(30)6-13(29)7-16(14)39-25(17)11-2-4-12(28)5-3-11/h2-8,10,18-24,26-27,31-36H,9H2,1H3,(H2-,28,29,30) |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C27H30O14 |
|---|
| Average Mass | 578.5230 Da |
|---|
| Monoisotopic Mass | 578.16356 Da |
|---|
| IUPAC Name | 7-hydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1lambda4-chromen-1-ylium-5-olate |
|---|
| Traditional Name | 7-hydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1lambda4-chromen-1-ylium-5-olate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1OC(OCC2OC(OC3=CC4=C(C=C(O)C=C4[O-])[O+]=C3C3=CC=C(O)C=C3)C(O)C(O)C2O)C(O)C(O)C1O |
|---|
| InChI Identifier | InChI=1/C27H30O14/c1-10-19(31)21(33)23(35)26(38-10)37-9-18-20(32)22(34)24(36)27(41-18)40-17-8-14-15(30)6-13(29)7-16(14)39-25(17)11-2-4-12(28)5-3-11/h2-8,10,18-24,26-27,31-36H,9H2,1H3,(H2-,28,29,30) |
|---|
| InChI Key | IFYOHQQBIKDHFT-UHFFFAOYNA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | Not Available |
|---|
| Chemical Taxonomy |
|---|
| Classification | Not classified |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Pacheco-Hernandez Y, Lozoya-Gloria E, Rangel-Galvan M, Varela-Caselis JL, Villa-Ruano N: Nutraceutical Activity of Anthocyanins from the Edible Berries of Rhamnus pompana. Chem Biodivers. 2023 Oct;20(10):e202301034. doi: 10.1002/cbdv.202301034. Epub 2023 Sep 11. [PubMed:37616166 ]
- Wang A, Ma H, Zhang X, Zhang B, Li F: Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids. BMC Plant Biol. 2023 Jul 11;23(1):356. doi: 10.1186/s12870-023-04361-1. [PubMed:37434140 ]
- Chu L, Zheng W, Wang J, Wang Z, Zhao W, Zhao B, Xu G, Xiao M, Lou X, Pan F, Zhou Y: Comparative analysis of the difference in flavonoid metabolic pathway during coloring between red-yellow and red sweet cherry (Prunus avium L.). Gene. 2023 Sep 5;880:147602. doi: 10.1016/j.gene.2023.147602. Epub 2023 Jul 7. [PubMed:37422177 ]
- Yang X, Li A, Xia J, Huang Y, Lu X, Guo G, Sui S: Enhancement of the anthocyanin contents of Caladium leaves and petioles via metabolic engineering with co-overexpression of AtPAP1 and ZmLc transcription factors. Front Plant Sci. 2023 Jun 21;14:1186816. doi: 10.3389/fpls.2023.1186816. eCollection 2023. [PubMed:37416877 ]
- Wang Z, Li X, Chen M, Yang L, Zhang Y: Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Spot Formation on Lilium leichtlinii var. maximowiczii Flower Petals. Int J Mol Sci. 2023 Jan 17;24(3):1844. doi: 10.3390/ijms24031844. [PubMed:36768164 ]
- Van de Velde F, Vignatti C, Paula Mendez-Galarraga M, Gomila M, Fenoglio C, Donda Zbinden M, Elida Pirovani M: Intestinal and colonic bioaccessibility of phenolic compounds from fruit smoothies as affected by the thermal processing and the storage conditions. Food Res Int. 2022 May;155:111086. doi: 10.1016/j.foodres.2022.111086. Epub 2022 Mar 3. [PubMed:35400462 ]
- Cozzolino R, Pace B, Palumbo M, Laurino C, Picariello G, Siano F, De Giulio B, Pelosi S, Cefola M: Profiles of Volatile and Phenolic Compounds as Markers of Ripening Stage in Candonga Strawberries. Foods. 2021 Dec 14;10(12):3102. doi: 10.3390/foods10123102. [PubMed:34945655 ]
- Xu Y, Li Y, Xie J, Xie L, Mo J, Chen W: Bioavailability, Absorption, and Metabolism of Pelargonidin-Based Anthocyanins Using Sprague-Dawley Rats and Caco-2 Cell Monolayers. J Agric Food Chem. 2021 Jul 21;69(28):7841-7850. doi: 10.1021/acs.jafc.1c00257. Epub 2021 Jun 17. [PubMed:34139848 ]
- Hssaini L, Hernandez F, Viuda-Martos M, Charafi J, Razouk R, Houmanat K, Ouaabou R, Ennahli S, Elothmani D, Hmid I, Fauconnier ML, Hanine H: Survey of Phenolic Acids, Flavonoids and In Vitro Antioxidant Potency Between Fig Peels and Pulps: Chemical and Chemometric Approach. Molecules. 2021 Apr 28;26(9):2574. doi: 10.3390/molecules26092574. [PubMed:33925094 ]
- Sanchez-Gavilan I, Ramirez E, de la Fuente V: Bioactive Compounds in Salicornia patula Duval-Jouve: A Mediterranean Edible Euhalophyte. Foods. 2021 Feb 12;10(2):410. doi: 10.3390/foods10020410. [PubMed:33673201 ]
|
|---|