Np mrd loader

Record Information
Version2.0
Created at2024-09-11 09:11:05 UTC
Updated at2024-09-11 09:11:05 UTC
NP-MRD IDNP0337079
Secondary Accession NumbersNone
Natural Product Identification
Common NameAlitame
DescriptionAlitame belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alitame was first documented in 2013 (PMID: 23863365). Based on a literature review a significant number of articles have been published on Alitame (PMID: 38340820) (PMID: 38041977) (PMID: 36461268) (PMID: 34207293) (PMID: 34048820) (PMID: 31861939).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC14H25N3O4S
Average Mass331.4300 Da
Monoisotopic Mass331.15658 Da
IUPAC Name3-amino-3-({1-[(2,2,4,4-tetramethylthietan-3-yl)carbamoyl]ethyl}carbamoyl)propanoic acid
Traditional Namealitame
CAS Registry NumberNot Available
SMILES
CC(NC(=O)C(N)CC(O)=O)C(=O)NC1C(C)(C)SC1(C)C
InChI Identifier
InChI=1/C14H25N3O4S/c1-7(16-11(21)8(15)6-9(18)19)10(20)17-12-13(2,3)22-14(12,4)5/h7-8,12H,6,15H2,1-5H3,(H,16,21)(H,17,20)(H,18,19)
InChI KeyIVBOUFAWPCPFTQ-UHFFFAOYNA-N
Experimental Spectra
Not Available
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of OriginNot Available
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentDipeptides
Alternative Parents
Substituents
  • Alpha-dipeptide
  • Aspartic acid or derivatives
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Alanine or derivatives
  • N-substituted-alpha-amino acid
  • Alpha-amino acid or derivatives
  • Heterocyclic fatty acid
  • N-acyl-amine
  • Fatty amide
  • Fatty acid
  • Fatty acyl
  • Thietane
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Amino acid
  • Carboxamide group
  • Dialkylthioether
  • Thioether
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Organic nitrogen compound
  • Primary aliphatic amine
  • Organonitrogen compound
  • Organooxygen compound
  • Primary amine
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic oxide
  • Amine
  • Organopnictogen compound
  • Organic oxygen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-2.9ChemAxon
pKa (Strongest Acidic)3.44ChemAxon
pKa (Strongest Basic)8.23ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area121.52 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity83.58 m³·mol⁻¹ChemAxon
Polarizability34.2 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkAlitame
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Jiang L, Yu Z, Zhao Y, Yin D: Obesogenic potentials of environmental artificial sweeteners with disturbances on both lipid metabolism and neural responses. Sci Total Environ. 2024 Apr 1;919:170755. doi: 10.1016/j.scitotenv.2024.170755. Epub 2024 Feb 9. [PubMed:38340820 ]
  2. Cheng S, Wang S, Zheng M, Jin Y, Li J, Zhang M, Li XL, Min JZ: Simultaneous analysis of natural and artificial sweeteners in sugar-free drinks and urine samples by column-switching UHPLC-charged aerosol detection method. J Chromatogr A. 2024 Jan 4;1713:464533. doi: 10.1016/j.chroma.2023.464533. Epub 2023 Nov 28. [PubMed:38041977 ]
  3. Farag MA, Rezk MM, Hamdi Elashal M, El-Araby M, Khalifa SAM, El-Seedi HR: An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Res Int. 2022 Dec;162(Pt A):111853. doi: 10.1016/j.foodres.2022.111853. Epub 2022 Aug 24. [PubMed:36461268 ]
  4. Saputra F, Lai YH, Fernandez RAT, Macabeo APG, Lai HT, Huang JC, Hsiao CD: Acute and Sub-Chronic Exposure to Artificial Sweeteners at the Highest Environmentally Relevant Concentration Induce Less Cardiovascular Physiology Alterations in Zebrafish Larvae. Biology (Basel). 2021 Jun 18;10(6):548. doi: 10.3390/biology10060548. [PubMed:34207293 ]
  5. Pereira S, Henderson D, Hjelm M, Hard T, Hernandez Salazar LT, Laska M: Taste responsiveness of chimpanzees (Pan troglodytes) and black-handed spider monkeys (Ateles geoffroyi) to eight substances tasting sweet to humans. Physiol Behav. 2021 Sep 1;238:113470. doi: 10.1016/j.physbeh.2021.113470. Epub 2021 May 26. [PubMed:34048820 ]
  6. Ma K, Li X, Zhang Y, Liu F: Determining High-Intensity Sweeteners in White Spirits Using an Ultrahigh Performance Liquid Chromatograph with a Photo-Diode Array Detector and Charged Aerosol Detector. Molecules. 2019 Dec 20;25(1):40. doi: 10.3390/molecules25010040. [PubMed:31861939 ]
  7. Tang J, Yuan L, Xiao Y, Wang X, Wang S: [Simultaneous determination of nine artificial sweeteners in food by solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry]. Se Pu. 2019 Jun 8;37(6):619-625. doi: 10.3724/SP.J.1123.2019.01012. [PubMed:31152512 ]
  8. Tsuruda S, Sakamoto T, Akaki K: [Simultaneous determination of twelve sweeteners and nine preservatives in foods by solid-phase extraction and LC-MS/MS]. Shokuhin Eiseigaku Zasshi. 2013;54(3):204-12. doi: 10.3358/shokueishi.54.204. [PubMed:23863365 ]
  9. Mora MR, Dando R: The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf. 2021 Mar;20(2):1554-1583. doi: 10.1111/1541-4337.12703. Epub 2021 Feb 13. [PubMed:33580569 ]
  10. Li X, Li S, Li H, Wang J, Luo Q, Yin X: Quantification of artificial sweeteners in alcoholic drinks using direct analysis in real-time QTRAP mass spectrometry. Food Chem. 2021 Apr 16;342:128331. doi: 10.1016/j.foodchem.2020.128331. Epub 2020 Oct 8. [PubMed:33097326 ]
  11. Gatidou G, Vazaiou N, Thomaidis NS, Stasinakis AS: Biodegradability assessment of food additives using OECD 301F respirometric test. Chemosphere. 2020 Feb;241:125071. doi: 10.1016/j.chemosphere.2019.125071. Epub 2019 Oct 11. [PubMed:31683420 ]
  12. Lakade SS, Zhou Q, Li A, Borrull F, Fontanals N, Marce RM: Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples. J Sep Sci. 2018 Apr;41(7):1618-1624. doi: 10.1002/jssc.201701113. Epub 2018 Jan 25. [PubMed:29280297 ]
  13. Mooradian AD, Smith M, Tokuda M: The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN. 2017 Apr;18:1-8. doi: 10.1016/j.clnesp.2017.01.004. Epub 2017 Feb 4. [PubMed:29132732 ]
  14. Kubica P, Namiesnik J, Wasik A: Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem. 2015 Feb;407(5):1505-12. doi: 10.1007/s00216-014-8355-x. Epub 2014 Dec 4. [PubMed:25471292 ]
  15. Chattopadhyay S, Raychaudhuri U, Chakraborty R: Artificial sweeteners - a review. J Food Sci Technol. 2014 Apr;51(4):611-21. doi: 10.1007/s13197-011-0571-1. Epub 2011 Oct 21. [PubMed:24741154 ]