Record Information |
---|
Version | 2.0 |
---|
Created at | 2024-02-22 12:06:25 UTC |
---|
Updated at | 2024-09-03 04:19:34 UTC |
---|
NP-MRD ID | NP0332547 |
---|
Natural Product DOI | https://doi.org/10.57994/1804 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 5α,8α-epidioxy-(22E,24 R)-ergosta-6,22-dien-3β-ol |
---|
Description | 5α,8α-Epidioxy-(22E,24 R)-ergosta-6,22-dien-3β-ol, also known as (22E,24R)-5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol or ergosterol 5alpha,8alpha-epidioxide, belongs to the class of organic compounds known as ergostane steroids. These are steroids with a structure based on the ergostane skeleton, which arises from the methylation of cholestane at the 24-position. Thus, 5α,8α-epidioxy-(22E,24 r)-ergosta-6,22-dien-3β-ol is considered to be a sterol. 5α,8α-epidioxy-(22E,24 R)-ergosta-6,22-dien-3β-ol was first documented in 2022 (PMID: 36552259). Based on a literature review a significant number of articles have been published on 5α,8α-epidioxy-(22E,24 R)-ergosta-6,22-dien-3β-ol (PMID: 38346851) (PMID: 38338616) (PMID: 38154274) (PMID: 37711987) (PMID: 37458927) (PMID: 37446570). |
---|
Structure | CC(C)[C@@H](C)\C=C\[C@@H](C)[C@H]1CC[C@@H]2[C@]1(C)CC[C@@H]1[C@@]3(C)CC[C@H](O)C[C@@]33OO[C@@]21C=C3 InChI=1S/C28H44O3/c1-18(2)19(3)7-8-20(4)22-9-10-23-25(22,5)13-12-24-26(6)14-11-21(29)17-27(26)15-16-28(23,24)31-30-27/h7-8,15-16,18-24,29H,9-14,17H2,1-6H3/b8-7+/t19-,20+,21-,22+,23+,24+,25+,26+,27+,28-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(22E,24R)-5alpha,8alpha-Epidioxyergosta-6,22-dien-3beta-ol | ChEBI | (24R)-5alpha,8alpha-Epidioxy-24-methylcholesta-6,22-dien-3beta-ol | ChEBI | (3beta,5alpha,8alpha,22E)-5,8-Epidioxyergosta-6,22-dien-3-ol | ChEBI | 5alpha,8alpha-Epidioxy-22E-ergosta-6,22-dien-3beta-ol | ChEBI | Ergosterol 5alpha,8alpha-epidioxide | ChEBI | Ergosterol endoperoxide | ChEBI | Ergosterol-5,8-peroxide | ChEBI | Peroxyergosterol | ChEBI | (22E,24R)-5a,8a-Epidioxyergosta-6,22-dien-3b-ol | Generator | (22E,24R)-5Α,8α-epidioxyergosta-6,22-dien-3β-ol | Generator | (24R)-5a,8a-Epidioxy-24-methylcholesta-6,22-dien-3b-ol | Generator | (24R)-5Α,8α-epidioxy-24-methylcholesta-6,22-dien-3β-ol | Generator | (3b,5a,8a,22E)-5,8-Epidioxyergosta-6,22-dien-3-ol | Generator | (3Β,5α,8α,22E)-5,8-epidioxyergosta-6,22-dien-3-ol | Generator | 5a,8a-Epidioxy-22E-ergosta-6,22-dien-3b-ol | Generator | 5Α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol | Generator | Ergosterol 5a,8a-epidioxide | Generator | Ergosterol 5α,8α-epidioxide | Generator | 3-Hydroxy-5,7-epidioxyergosta-6,22-diene | MeSH | 5,8-Epidioxyergosta-6,22-dien-3-ol | MeSH |
|
---|
Chemical Formula | C28H44O3 |
---|
Average Mass | 428.6570 Da |
---|
Monoisotopic Mass | 428.32905 Da |
---|
IUPAC Name | (1S,2R,5R,6R,9R,10R,13S,15S)-5-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0^{1,9}.0^{2,6}.0^{10,15}]nonadec-18-en-13-ol |
---|
Traditional Name | (1S,2R,5R,6R,9R,10R,13S,15S)-5-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0^{1,9}.0^{2,6}.0^{10,15}]nonadec-18-en-13-ol |
---|
CAS Registry Number | Not Available |
---|
SMILES | CC(C)[C@@H](C)\C=C\[C@@H](C)[C@H]1CC[C@@H]2[C@]1(C)CC[C@@H]1[C@@]3(C)CC[C@H](O)C[C@@]33OO[C@@]21C=C3 |
---|
InChI Identifier | InChI=1S/C28H44O3/c1-18(2)19(3)7-8-20(4)22-9-10-23-25(22,5)13-12-24-26(6)14-11-21(29)17-27(26)15-16-28(23,24)31-30-27/h7-8,15-16,18-24,29H,9-14,17H2,1-6H3/b8-7+/t19-,20+,21-,22+,23+,24+,25+,26+,27+,28-/m0/s1 |
---|
InChI Key | VXOZCESVZIRHCJ-KGHQQZOUSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 151 MHz, C2D6OS, experimental) | yijing0212@163.com | 南方医科大学 | Jing Yi | 2024-02-22 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, C2D6OS, experimental) | yijing0212@163.com | 南方医科大学 | Jing Yi | 2024-02-22 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Not Available |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as ergostane steroids. These are steroids with a structure based on the ergostane skeleton, which arises from the methylation of cholestane at the 24-position. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Steroids and steroid derivatives |
---|
Sub Class | Ergostane steroids |
---|
Direct Parent | Ergostane steroids |
---|
Alternative Parents | |
---|
Substituents | - Ergostane-skeleton
- Ortho-dioxane
- Cyclic alcohol
- Dialkyl peroxide
- Secondary alcohol
- Oxacycle
- Organoheterocyclic compound
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Daroodi Z, Taheri P, Tarighi S, Iranshahi M, Akaberi M: Efficacy of ergosterol peroxide obtained from the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. J Appl Microbiol. 2024 Feb 1;135(2):lxae031. doi: 10.1093/jambio/lxae031. [PubMed:38346851 ]
- Yin Z, Zhu L, Gao M, Yu D, Zhang Z, Zhu L, Zhan X: Effects of In Vitro Fermentation of Polysialic Acid and Sialic Acid on Gut Microbial Community Composition and Metabolites in Healthy Humans. Foods. 2024 Feb 2;13(3):481. doi: 10.3390/foods13030481. [PubMed:38338616 ]
- Chiou WC, Lyu YS, Hsia TL, Chen JC, Lin LC, Chang MF, Hsu MS, Huang C: Ergosterol peroxide blocks HDV infection as a novel entry inhibitor by targeting human NTCP receptor. Biomed Pharmacother. 2024 Jan;170:116077. doi: 10.1016/j.biopha.2023.116077. Epub 2023 Dec 28. [PubMed:38154274 ]
- Hoang CK, Le CH, Nguyen DT, Tran HTN, Luu CV, Le HM, Tran HTH: Steroid Components of Marine-Derived Fungal Strain Penicillium levitum N33.2 and Their Biological Activities. Mycobiology. 2023 Aug 31;51(4):246-255. doi: 10.1080/12298093.2023.2248717. eCollection 2023. [PubMed:37711987 ]
- Gris L, Battershill CN, Prinsep MR: Investigation of the Dietary Preferences of Two Dorid Nudibranchs by Feeding-Choice Experiments and Chemical Analysis. J Chem Ecol. 2023 Oct;49(9-10):599-610. doi: 10.1007/s10886-023-01444-z. Epub 2023 Jul 17. [PubMed:37458927 ]
- Sulkowska-Ziaja K, Robak J, Szczepkowski A, Gunia-Krzyzak A, Popiol J, Piotrowska J, Rospond B, Szewczyk A, Kala K, Muszynska B: Comparison of Bioactive Secondary Metabolites and Cytotoxicity of Extracts from Inonotus obliquus Isolates from Different Host Species. Molecules. 2023 Jun 22;28(13):4907. doi: 10.3390/molecules28134907. [PubMed:37446570 ]
- Khazaal HT, Khazaal MT, Abdel-Razek AS, Hamed AA, Ebrahim HY, Ibrahim RR, Bishr M, Mansour YE, El Dib RA, Soliman HSM: Antimicrobial, antiproliferative activities and molecular docking of metabolites from Alternaria alternata. AMB Express. 2023 Jul 6;13(1):68. doi: 10.1186/s13568-023-01568-1. [PubMed:37414961 ]
- Manassov N, Samy MN, Datkhayev U, Avula B, Adams SJ, Katragunta K, Raman V, Khan IA, Ross SA: Ultrastructural, Energy-Dispersive X-ray Spectroscopy, Chemical Study and LC-DAD-QToF Chemical Characterization of Cetraria islandica (L.) Ach. Molecules. 2023 Jun 1;28(11):4493. doi: 10.3390/molecules28114493. [PubMed:37298969 ]
- Huang J, Lin Z, Wang Y, Ding X, Zhang B: Wuling San Based on Network Pharmacology and in vivo Evidence Against Hyperuricemia via Improving Oxidative Stress and Inhibiting Inflammation. Drug Des Devel Ther. 2023 Mar 4;17:675-690. doi: 10.2147/DDDT.S398625. eCollection 2023. [PubMed:36911073 ]
- Ilyas Y M, Sahidin I, Jabbar A, Yodha AWM, Diantini A, Pradipta IS, Amalia R, Febrianti RM, Hadisaputri YE, Ghozali M, Julaeha E: Effect of Immunomodulating Extract and Some Isolates from Etlingera rubroloba A.D. Poulsen Fruits on Diabetic Patients with Tuberculosis. Molecules. 2023 Mar 6;28(5):2401. doi: 10.3390/molecules28052401. [PubMed:36903646 ]
- Sasaki H, Kurakado S, Matsumoto Y, Yoshino Y, Sugita T, Koyama K, Kinoshita K: Enniatins from a marine-derived fungus Fusarium sp. inhibit biofilm formation by the pathogenic fungus Candida albicans. J Nat Med. 2023 Jun;77(3):455-463. doi: 10.1007/s11418-023-01684-z. Epub 2023 Mar 1. [PubMed:36859622 ]
- Buonanno F, Trenti F, Achille G, Vallesi A, Guella G, Ortenzi C: Chemical Defence by Sterols in the Freshwater Ciliate Stentor polymorphus. Biology (Basel). 2022 Nov 30;11(12):1749. doi: 10.3390/biology11121749. [PubMed:36552259 ]
- Sunarwidhi AL, Hernawan A, Frediansyah A, Widyastuti S, Martyasari NWR, Abidin AS, Padmi H, Handayani E, Utami NWP, Maulana FA, Ichfa MSM, Prasedya ES: Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules. 2022 Nov 3;27(21):7509. doi: 10.3390/molecules27217509. [PubMed:36364336 ]
- Alvarez CM, Oliveira MME, Pires RH: Sporotrichosis: A Review of a Neglected Disease in the Last 50 Years in Brazil. Microorganisms. 2022 Oct 30;10(11):2152. doi: 10.3390/microorganisms10112152. [PubMed:36363744 ]
- Qiu S, Liu Q, Yuan Y, Zhou H, Zeng B: Aspergillus oryzae accelerates the conversion of ergosterol to ergosterol peroxide by efficiently utilizing cholesterol. Front Genet. 2022 Aug 22;13:984343. doi: 10.3389/fgene.2022.984343. eCollection 2022. [PubMed:36072662 ]
|
---|