Record Information |
---|
Version | 2.0 |
---|
Created at | 2023-09-20 16:01:16 UTC |
---|
Updated at | 2024-09-03 04:17:10 UTC |
---|
NP-MRD ID | NP0331835 |
---|
Natural Product DOI | https://doi.org/10.57994/0940 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Silibinin |
---|
Description | Silibinin is also known as silybin or legalon. Silibinin is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Silibinin was first documented in 2021 (PMID: 34353693). Based on a literature review a significant number of articles have been published on Silibinin (PMID: 34399200) (PMID: 34360650) (PMID: 34348081) (PMID: 34344191) (PMID: 34285784) (PMID: 34258250). |
---|
Structure | [H]OC1=C([H])C(O[H])=C2C(O[C@]([H])(C3=C([H])C([H])=C4O[C@]([H])(C([H])([H])O[H])[C@]([H])(OC4=C3[H])C3=C([H])C([H])=C(O[H])C(OC([H])([H])[H])=C3[H])[C@@]([H])(O[H])C2=O)=C1[H] InChI=1S/C25H22O10/c1-32-17-6-11(2-4-14(17)28)24-20(10-26)33-16-5-3-12(7-18(16)34-24)25-23(31)22(30)21-15(29)8-13(27)9-19(21)35-25/h2-9,20,23-29,31H,10H2,1H3/t20-,23+,24-,25-/m1/s1 |
---|
Synonyms | Value | Source |
---|
Flavobin | ChEBI | Karsil | ChEBI | Silibinina | ChEBI | Silibinine | ChEBI | Silibininum | ChEBI | Silybin | ChEBI | Silymarin | ChEBI | Silymarin I | Kegg | Legalon | Kegg | 2,3 Dehydrosilybin | MeSH | 2,3-Dehydrosilybin | MeSH | Alepa forte | MeSH | Alepa-forte | MeSH | Ardeyhepan | MeSH | Cefasilymarin | MeSH | Hepa merz sil | MeSH | Hepa loges | MeSH | Hepa-merz sil | MeSH | HepaBesch | MeSH | Hepar pasc | MeSH | Hepar-pasc | MeSH | Heparsyx | MeSH | Heplant | MeSH | Lagosa | MeSH | Silibinin a | MeSH | Silibinin b | MeSH | Durasilymarin | MeSH | Hepa-loges | MeSH | Legalon forte | MeSH | Silibin | MeSH | Silybin a | MeSH | Silybin b | MeSH | Silybinin | MeSH | Silibinin | MeSH | Hepatos | MeSH |
|
---|
Chemical Formula | C25H22O10 |
---|
Average Mass | 482.4410 Da |
---|
Monoisotopic Mass | 482.12130 Da |
---|
IUPAC Name | (2R,3R)-3,5,7-trihydroxy-2-[(2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-3,4-dihydro-2H-1-benzopyran-4-one |
---|
Traditional Name | silibinin |
---|
CAS Registry Number | Not Available |
---|
SMILES | [H]OC1=C([H])C(O[H])=C2C(O[C@]([H])(C3=C([H])C([H])=C4O[C@]([H])(C([H])([H])O[H])[C@]([H])(OC4=C3[H])C3=C([H])C([H])=C(O[H])C(OC([H])([H])[H])=C3[H])[C@@]([H])(O[H])C2=O)=C1[H] |
---|
InChI Identifier | InChI=1S/C25H22O10/c1-32-17-6-11(2-4-14(17)28)24-20(10-26)33-16-5-3-12(7-18(16)34-24)25-23(31)22(30)21-15(29)8-13(27)9-19(21)35-25/h2-9,20,23-29,31H,10H2,1H3/t20-,23+,24-,25-/m1/s1 |
---|
InChI Key | SEBFKMXJBCUCAI-HKTJVKLFSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
HMBC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-09-20 | View Spectrum | HSQC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-09-20 | View Spectrum | COSY NMR | [1H, 1H] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-09-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-09-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Not Available |
---|
Chemical Taxonomy |
---|
Description | This compound belongs to the class of organic compounds known as flavonolignans. These are non-conventional lignans that derived from flavonoids. They are characterized by a p-dioxin ring substituted at one carbon atom by a C3C6 (phenylpropan) group and fused to the B-ring of the 2-phenylchromene moiety. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lignans, neolignans and related compounds |
---|
Class | Flavonolignans |
---|
Sub Class | Not Available |
---|
Direct Parent | Flavonolignans |
---|
Alternative Parents | |
---|
Substituents | - Flavonolignan
- Hydroxyflavonoid
- 3-hydroxyflavonoid
- Flavanonol
- Flavanone
- 7-hydroxyflavonoid
- 5-hydroxyflavonoid
- Flavan
- Phenylbenzodioxane
- 2-phenylbenzo-1,4-dioxane
- Chromone
- 1-benzopyran
- Methoxyphenol
- Benzopyran
- Chromane
- Benzodioxane
- Benzo-1,4-dioxane
- Phenoxy compound
- Anisole
- Methoxybenzene
- Aryl alkyl ketone
- Aryl ketone
- Phenol ether
- Alkyl aryl ether
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- 1-hydroxy-4-unsubstituted benzenoid
- Benzenoid
- Para-dioxin
- Monocyclic benzene moiety
- Vinylogous acid
- Secondary alcohol
- Ketone
- Polyol
- Organoheterocyclic compound
- Ether
- Oxacycle
- Alcohol
- Organooxygen compound
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Primary alcohol
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Dhami-Shah H, Vaidya R, Talwadekar M, Shaw E, Udipi S, Kolthur-Seetharam U, Vaidya ADB: Intervention by picroside II on FFAs induced lipid accumulation and lipotoxicity in HepG2 cells. J Ayurveda Integr Med. 2021 Jul-Sep;12(3):465-473. doi: 10.1016/j.jaim.2021.04.007. Epub 2021 Aug 2. [PubMed:34353693 ]
- Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H: Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother. 2021 Oct;142:112024. doi: 10.1016/j.biopha.2021.112024. Epub 2021 Aug 13. [PubMed:34399200 ]
- Kren V: Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci. 2021 Jul 23;22(15):7885. doi: 10.3390/ijms22157885. [PubMed:34360650 ]
- Mukherjee S, Sharma D, Sharma AK, Jaiswal S, Sharma N, Borah S, Kaur G: Flavan-based phytoconstituents inhibit Mpro, a SARS-COV-2 molecular target, in silico. J Biomol Struct Dyn. 2022;40(22):11545-11559. doi: 10.1080/07391102.2021.1960196. Epub 2021 Aug 4. [PubMed:34348081 ]
- Schenk-Jager K, Gessler M, Weiler S: [CME: Mushroom Poisoning in the Family Practice]. Praxis (Bern 1994). 2021 Aug;110(10):543-553. doi: 10.1024/1661-8157/a003715. [PubMed:34344191 ]
- Yan B, Zhang C: Liver Protection Mechanism and Absorption Promotion Technology of Silybin Based on Intelligent Medical Analysis. J Healthc Eng. 2021 Jul 3;2021:9968016. doi: 10.1155/2021/9968016. eCollection 2021. [PubMed:34285784 ]
- Cho K, Lee HG, Piao JY, Kim SJ, Na HK, Surh YJ: Protective Effects of Silibinin on Helicobacter pylori-induced Gastritis: NF-kappaB and STAT3 as Potential Targets. J Cancer Prev. 2021 Jun 30;26(2):118-127. doi: 10.15430/JCP.2021.26.2.118. [PubMed:34258250 ]
- Ali SA, Saifi MA, Godugu C, Talla V: Silibinin alleviates silica-induced pulmonary fibrosis: Potential role in modulating inflammation and epithelial-mesenchymal transition. Phytother Res. 2021 Sep;35(9):5290-5304. doi: 10.1002/ptr.7210. Epub 2021 Jul 12. [PubMed:34250649 ]
- Vidimce J, Pennell EN, Foo M, Shiels RG, Shibeeb S, Watson M, Bulmer AC: Effect of Silymarin Treatment on Circulating Bilirubin and Cardiovascular Disease Risk Factors in Healthy Men: A Single-Blind, Randomized Crossover Trial. Clin Pharmacol Drug Dev. 2021 Oct;10(10):1156-1165. doi: 10.1002/cpdd.962. Epub 2021 Jul 9. [PubMed:34242497 ]
- Prabu SM, Muthumani M: Retraction Note to: Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep. 2021 Jun;48(6):5377. doi: 10.1007/s11033-021-06475-x. [PubMed:34235619 ]
- Mohammadi H, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR: Correction to: Concurrent metformin and silibinin therapy in diabetes: assessments in zebrafish (Danio rerio) animal model. J Diabetes Metab Disord. 2020 Dec 7;20(1):1099. doi: 10.1007/s40200-020-00698-8. eCollection 2021 Jun. [PubMed:34222101 ]
- Zarpou S, Mosavi H, Bagheri A, Malekzadeh Shafaroudi M, Khonakdar-Tarsi A: NF-kappaB and NLRP3 gene expression changes during warm hepatic ischemia-reperfusion in rats with and without silibinin. Gastroenterol Hepatol Bed Bench. 2021 Summer;14(3):267-275. [PubMed:34221267 ]
- Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ: Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells. 2021 Jun 29;10(7):1632. doi: 10.3390/cells10071632. [PubMed:34209829 ]
- Verdura S, Cuyas E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA: Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel). 2021 Jun 11;14(6):559. doi: 10.3390/ph14060559. [PubMed:34208282 ]
- Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T: Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav. 2021 Oct 1;239:113510. doi: 10.1016/j.physbeh.2021.113510. Epub 2021 Jun 25. [PubMed:34181930 ]
|
---|