Np mrd loader

Record Information
Version1.0
Created at2023-08-15 16:00:43 UTC
Updated at2024-04-19 09:50:51 UTC
NP-MRD IDNP0331766
Secondary Accession NumbersNone
Natural Product Identification
Common NameLignoceric acid
DescriptionTetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid exists in all eukaryotes, ranging from yeast to plants to humans. In humans, tetracosanoic acid is involved in the metabolic disorder called the carnitine-acylcarnitine translocase deficiency pathway. Tetracosanoic acid is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. It was first documented in 2011 (PMID: 21781003). Based on a literature review a significant number of articles have been published on Tetracosanoic acid (PMID: 23157011) (PMID: 30200734) (PMID: 29376243) (PMID: 34368026) (PMID: 33778229) (PMID: 33392872).
Structure
Thumb
Synonyms
ValueSource
CH3-[CH2]22-COOHChEBI
Lignoceric acidChEBI
LignozerinsaeureChEBI
N-Tetracosanoic acidChEBI
Tetracosanic acidChEBI
TetracosansaeureChEBI
Tetracosoic acidChEBI
Tetraeicosanoic acidChEBI
Tetraicosanoic acidChEBI
LignocerateGenerator
N-TetracosanoateGenerator
TetracosanateGenerator
TetracosoateGenerator
TetraeicosanoateGenerator
TetraicosanoateGenerator
TetracosanoateGenerator
Lignoceric acid, silver (1+) saltHMDB
Lignoceric acid, sodium saltHMDB
Lignoceric acid, potassium saltHMDB
Tetracosanoic acid, potassium salt (1:1)HMDB
Potassium tetracosanoateHMDB
FA(24:0)HMDB
Tetracosanoic acidMeSH
Chemical FormulaC24H48O2
Average Mass368.6367 Da
Monoisotopic Mass368.36543 Da
IUPAC Nametetracosanoic acid
Traditional Namelignoceric acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCCCCCCCCCCCC(O)=O
InChI Identifier
InChI=1S/C24H48O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24(25)26/h2-23H2,1H3,(H,25,26)
InChI KeyQZZGJDVWLFXDLK-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR[1H, ] NMR Spectrum (2D, 600 MHz, CDCl3, experimental)bgnzk@missouri.eduNot AvailableNot Available2023-08-15View Spectrum
1D NMR[1H, ] NMR Spectrum (2D, 600 MHz, CDCl3, experimental)bgnzk@missouri.eduNot AvailableNot Available2023-08-15View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of OriginNot Available
Chemical Taxonomy
Description Belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentVery long-chain fatty acids
Alternative Parents
Substituents
  • Very long-chain fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP9.56ALOGPS
logP9.81ChemAxon
logS-7.2ALOGPS
pKa (Strongest Acidic)4.95ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count22ChemAxon
Refractivity113.89 m³·mol⁻¹ChemAxon
Polarizability51.57 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0002003
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB004651
KNApSAcK IDC00001223
Chemspider ID10724
KEGG Compound IDC08320
BioCyc IDTETRACOSANOATE
BiGG ID2218057
Wikipedia LinkLignoceric_acid
METLIN ID6427
PubChem Compound11197
PDB IDNot Available
ChEBI ID28866
Good Scents IDrw1287001
References
General References
  1. Kumari R, Mallavarapu GR, Jain VK, Kumar S: Chemical composition of the fatty oils of the seeds of Cleome viscosa accessions. Nat Prod Commun. 2012 Oct;7(10):1363-4. [PubMed:23157011 ]
  2. Bu MM, Yu SQ, Dong CZ: [Chemical constituents from fruits of Aristolochia mollissima and their nematicidal activity against root-knot nematode]. Zhongguo Zhong Yao Za Zhi. 2018 Aug;43(16):3307-3314. doi: 10.19540/j.cnki.cjcmm.20180514.001. [PubMed:30200734 ]
  3. Gu Y, Zhang X, Chen YK, Zhao BW, Zhang YL: [Discover potential inhibitors of 5-LOX and LTA4H from Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix based on molecular simulation methods]. Zhongguo Zhong Yao Za Zhi. 2017 Dec;42(23):4494-4502. doi: 10.19540/j.cnki.cjcmm.2017.0201. [PubMed:29376243 ]
  4. Chen S, Du L, Lei Y, Lin Y, Chen S, Liu Y: Two Novel HSD17B4 Heterozygous Mutations in Association With D-Bifunctional Protein Deficiency: A Case Report and Literature Review. Front Pediatr. 2021 Jul 23;9:679597. doi: 10.3389/fped.2021.679597. eCollection 2021. [PubMed:34368026 ]
  5. He X, Li DZ, Tian B: Diversity in seed oil content and fatty acid composition in Acer species with potential as sources of nervonic acid. Plant Divers. 2020 Oct 31;43(1):86-92. doi: 10.1016/j.pld.2020.10.003. eCollection 2021 Feb. [PubMed:33778229 ]
  6. Wang W, Sheng Y: Ampicillin used in aseptic processing influences the production of pigments and fatty acids in Chlorella sorokiniana. World J Microbiol Biotechnol. 2021 Jan 4;37(1):3. doi: 10.1007/s11274-020-02985-1. [PubMed:33392872 ]
  7. Parlindungan E, May BK, Jones OAH: Metabolic Insights Into the Effects of Nutrient Stress on Lactobacillus plantarum B21. Front Mol Biosci. 2019 Aug 30;6:75. doi: 10.3389/fmolb.2019.00075. eCollection 2019. [PubMed:31544106 ]
  8. Tasselli G, Filippucci S, D'Antonio S, Cavalaglio G, Turchetti B, Cotana F, Buzzini P: Optimization of enzymatic hydrolysis of cellulosic fraction obtained from stranded driftwood feedstocks for lipid production by Solicoccozyma terricola. Biotechnol Rep (Amst). 2019 Aug 7;24:e00367. doi: 10.1016/j.btre.2019.e00367. eCollection 2019 Dec. [PubMed:31453116 ]
  9. Berger M, Nelson B, Markulev C, Yuen HP, Schafer MR, Mossaheb N, Schlogelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rossler A, Verma S, Mitchell TW, Meyer BJ, Thompson A, Yung AR, McGorry PD, Amminger GP: Relationship Between Polyunsaturated Fatty Acids and Psychopathology in the NEURAPRO Clinical Trial. Front Psychiatry. 2019 Jun 6;10:393. doi: 10.3389/fpsyt.2019.00393. eCollection 2019. [PubMed:31244693 ]
  10. Kamarudheen N, Rao KVB: Fatty acyl compounds from marine Streptomyces griseoincarnatus strain HK12 against two major bio-film forming nosocomial pathogens; an in vitro and in silico approach. Microb Pathog. 2019 Feb;127:121-130. doi: 10.1016/j.micpath.2018.11.050. Epub 2018 Nov 30. [PubMed:30508626 ]
  11. Hernandez-Garcia E, Garcia A, Garza-Gonzalez E, Avalos-Alanis FG, Rivas-Galindo VM, Rodriguez-Rodriguez J, Alcantar-Rosales VM, Delgadillo-Puga C, Del Rayo Camacho-Corona M: Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J Ethnopharmacol. 2019 Feb 10;230:74-80. doi: 10.1016/j.jep.2018.10.031. Epub 2018 Oct 25. [PubMed:30367988 ]
  12. Marchetti DP, Steffens L, Jacques CE, Guerreiro GB, Mescka CP, Deon M, de Coelho DM, Moura DJ, Viario AG, Poletto F, Coitinho AS, Jardim LB, Vargas CR: Oxidative Imbalance, Nitrative Stress, and Inflammation in C6 Glial Cells Exposed to Hexacosanoic Acid: Protective Effect of N-acetyl-L-cysteine, Trolox, and Rosuvastatin. Cell Mol Neurobiol. 2018 Nov;38(8):1505-1516. doi: 10.1007/s10571-018-0626-1. Epub 2018 Oct 9. [PubMed:30302628 ]
  13. Shu X, Zheng W, Yu D, Li HL, Lan Q, Yang G, Cai H, Ma X, Rothman N, Gao YT, Jia W, Xiang YB, Shu XO: Prospective metabolomics study identifies potential novel blood metabolites associated with pancreatic cancer risk. Int J Cancer. 2018 Nov 1;143(9):2161-2167. doi: 10.1002/ijc.31574. Epub 2018 Jul 31. [PubMed:29717485 ]
  14. Bezine M, Maatoug S, Ben Khalifa R, Debbabi M, Zarrouk A, Wang Y, Griffiths WJ, Nury T, Samadi M, Vejux A, de Seze J, Moreau T, Kharrat R, El Ayeb M, Lizard G: Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie. 2018 Oct;153:56-69. doi: 10.1016/j.biochi.2018.02.008. Epub 2018 Feb 17. [PubMed:29462682 ]
  15. Luo Y, Huang Y, Yuan X, Zhang L, Zhang X, Gao P: Evaluation of Fatty Acid Composition and Antioxidant Activity of Wild-Growing Mushrooms from Southwest China. Int J Med Mushrooms. 2017;19(10):937-947. doi: 10.1615/IntJMedMushrooms.2017024388. [PubMed:29256847 ]
  16. Fernandes TS, Copetti D, do Carmo G, Neto AT, Pedroso M, Silva UF, Mostardeiro MA, Burrow RE, Dalcol II, Morel AF: Phytochemical analysis of bark from Helietta apiculata Benth and antimicrobial activities. Phytochemistry. 2017 Sep;141:131-139. doi: 10.1016/j.phytochem.2017.05.017. [PubMed:28614729 ]
  17. Chen DQ, Chen H, Chen L, Vaziri ND, Wang M, Li XR, Zhao YY: The link between phenotype and fatty acid metabolism in advanced chronic kidney disease. Nephrol Dial Transplant. 2017 Jul 1;32(7):1154-1166. doi: 10.1093/ndt/gfw415. [PubMed:28339984 ]
  18. Bezine M, Debbabi M, Nury T, Ben-Khalifa R, Samadi M, Cherkaoui-Malki M, Vejux A, Raas Q, de Seze J, Moreau T, El-Ayeb M, Lizard G: Evidence of K(+) homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24:0) in 158N murine oligodendrocytes. Chem Phys Lipids. 2017 Oct;207(Pt B):135-150. doi: 10.1016/j.chemphyslip.2017.03.006. Epub 2017 Mar 18. [PubMed:28322741 ]
  19. Schroeter A, Stahlberg S, Skolova B, Sonnenberger S, Eichner A, Huster D, Vavrova K, Hauss T, Dobner B, Neubert RH, Vogel A: Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. Soft Matter. 2017 Mar 8;13(10):2107-2119. doi: 10.1039/c6sm02356h. [PubMed:28225091 ]
  20. Royo F, Palomo L, Mleczko J, Gonzalez E, Alonso C, Martinez I, Perez-Cormenzana M, Castro A, Falcon-Perez JM: Metabolically active extracellular vesicles released from hepatocytes under drug-induced liver-damaging conditions modify serum metabolome and might affect different pathophysiological processes. Eur J Pharm Sci. 2017 Feb 15;98:51-57. doi: 10.1016/j.ejps.2016.10.020. Epub 2016 Oct 19. [PubMed:27771515 ]
  21. Chang AS, Sherazi ST, Kandhro AA, Mahesar SA, Chang F, Shah SN, Laghari ZH, Panhwar T: Characterization of Palm Fatty Acid Distillate of Different Oil Processing Industries of Pakistan. J Oleo Sci. 2016 Nov 1;65(11):897-901. doi: 10.5650/jos.ess16073. Epub 2016 Oct 12. [PubMed:27733738 ]
  22. Fabiano A, Gazzolo D, Zimmermann LJ, Gavilanes AW, Paolillo P, Fanos V, Caboni P, Barberini L, Noto A, Atzori L: Metabolomic analysis of bronchoalveolar lavage fluid in preterm infants complicated by respiratory distress syndrome: preliminary results. J Matern Fetal Neonatal Med. 2011 Oct;24 Suppl 2:55-8. doi: 10.3109/14767058.2011.606977. [PubMed:21781003 ]
  23. Sun Q, Lu Y, Wu SQ, Yao S, Zhang J: [Study on the chemical constituents from Gnaphalium hypoleucum]. Zhong Yao Cai. 2012 Apr;35(4):566-8. [PubMed:23019902 ]
  24. Reis MG, Roy NC, Bermingham EN, Ryan L, Bibiloni R, Young W, Krause L, Berger B, North M, Stelwagen K, Reis MM: Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet. J Agric Food Chem. 2013 Mar 20;61(11):2729-38. doi: 10.1021/jf303795b. Epub 2013 Mar 5. [PubMed:23394615 ]
  25. Qureshi MI, Abdin MZ, Ahmad J, Iqbal M: Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry. 2013 Nov;95:215-23. doi: 10.1016/j.phytochem.2013.06.026. Epub 2013 Jul 18. [PubMed:23871298 ]