Record Information |
---|
Version | 2.0 |
---|
Created at | 2023-07-13 15:43:31 UTC |
---|
Updated at | 2024-09-03 04:16:36 UTC |
---|
NP-MRD ID | NP0331714 |
---|
Natural Product DOI | https://doi.org/10.57994/0730 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Paynantheine |
---|
Description | Paynantheine belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group. Paynantheine was first documented in 2020 (PMID: 32597657). Based on a literature review a significant number of articles have been published on Paynantheine (PMID: 33620222) (PMID: 35472200) (PMID: 35468648) (PMID: 33408731) (PMID: 35335999) (PMID: 34803709). |
---|
Structure | CO\C=C(/[C@H]1C[C@@H]2N(CCC3=C2NC2=CC=CC(OC)=C32)C[C@@H]1C=C)C(=O)OC InChI=1S/C23H28N2O4/c1-5-14-12-25-10-9-15-21-18(7-6-8-20(21)28-3)24-22(15)19(25)11-16(14)17(13-27-2)23(26)29-4/h5-8,13-14,16,19,24H,1,9-12H2,2-4H3/b17-13+/t14-,16-,19-/m0/s1 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C23H28N2O4 |
---|
Average Mass | 396.4870 Da |
---|
Monoisotopic Mass | 396.20491 Da |
---|
IUPAC Name | methyl (2E)-2-[(2S,4S,5R)-5-ethenyl-12-methoxy-7,17-diazatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),11,13,15-tetraen-4-yl]-3-methoxyprop-2-enoate |
---|
Traditional Name | methyl (2E)-2-[(2S,4S,5R)-5-ethenyl-12-methoxy-7,17-diazatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),11,13,15-tetraen-4-yl]-3-methoxyprop-2-enoate |
---|
CAS Registry Number | Not Available |
---|
SMILES | CO\C=C(/[C@H]1C[C@@H]2N(CCC3=C2NC2=CC=CC(OC)=C32)C[C@@H]1C=C)C(=O)OC |
---|
InChI Identifier | InChI=1S/C23H28N2O4/c1-5-14-12-25-10-9-15-21-18(7-6-8-20(21)28-3)24-22(15)19(25)11-16(14)17(13-27-2)23(26)29-4/h5-8,13-14,16,19,24H,1,9-12H2,2-4H3/b17-13+/t14-,16-,19-/m0/s1 |
---|
InChI Key | JGZKIGWXPPFMRG-CYSPOEIOSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, CDCl3, experimental) | n_oberli@uncg.edu | Not Available | Not Available | 2023-07-13 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, CDCl3, experimental) | n_oberli@uncg.edu | Not Available | Not Available | 2023-07-13 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Species Name | Source | Reference |
---|
speciosa | | |
|
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group. |
---|
Kingdom | Organic compounds |
---|
Super Class | Alkaloids and derivatives |
---|
Class | Corynanthean-type alkaloids |
---|
Sub Class | Not Available |
---|
Direct Parent | Corynanthean-type alkaloids |
---|
Alternative Parents | |
---|
Substituents | - Corynanthean skeleton
- Beta-carboline
- Pyridoindole
- Quinolizine
- 3-alkylindole
- Indole
- Indole or derivatives
- Anisole
- Phenol ether
- Alkyl aryl ether
- Aralkylamine
- Benzenoid
- Piperidine
- Heteroaromatic compound
- Vinylogous ester
- Alpha,beta-unsaturated carboxylic ester
- Pyrrole
- Enoate ester
- Methyl ester
- Amino acid or derivatives
- Tertiary aliphatic amine
- Tertiary amine
- Carboxylic acid ester
- Carboxylic acid derivative
- Monocarboxylic acid or derivatives
- Organoheterocyclic compound
- Azacycle
- Ether
- Organic oxygen compound
- Organic nitrogen compound
- Organonitrogen compound
- Carbonyl group
- Amine
- Hydrocarbon derivative
- Organooxygen compound
- Organic oxide
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, Leon F, Sharma A, McMahon LR, Avery BA, McCurdy CR: Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. J Nat Prod. 2021 Apr 23;84(4):1104-1112. doi: 10.1021/acs.jnatprod.0c01163. Epub 2021 Feb 23. [PubMed:33620222 ]
- Flores-Bocanegra L, Raja HA, Graf TN, Augustinovic M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH: The Chemistry of Kratom [Mitragyna speciosa]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. J Nat Prod. 2020 Jul 24;83(7):2165-2177. doi: 10.1021/acs.jnatprod.0c00257. Epub 2020 Jun 29. [PubMed:32597657 ]
- Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Plant growth and phytoactive alkaloid synthesis in kratom [Mitragyna speciosa (Korth.)] in response to varying radiance. PLoS One. 2022 Apr 26;17(4):e0259326. doi: 10.1371/journal.pone.0259326. eCollection 2022. [PubMed:35472200 ]
- Manwill PK, Flores-Bocanegra L, Khin M, Raja HA, Cech NB, Oberlies NH, Todd DA: Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products. Planta Med. 2022 Apr 25. doi: 10.1055/a-1795-5876. [PubMed:35468648 ]
- Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Effects of Nutrient Fertility on Growth and Alkaloidal Content in Mitragyna speciosa (Kratom). Front Plant Sci. 2020 Dec 21;11:597696. doi: 10.3389/fpls.2020.597696. eCollection 2020. [PubMed:33408731 ]
- Tanna RS, Nguyen JT, Hadi DL, Manwill PK, Flores-Bocanegra L, Layton ME, White JR, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF: Clinical Pharmacokinetic Assessment of Kratom (Mitragyna speciosa), a Botanical Product with Opioid-like Effects, in Healthy Adult Participants. Pharmaceutics. 2022 Mar 11;14(3). pii: pharmaceutics14030620. doi: 10.3390/pharmaceutics14030620. [PubMed:35335999 ]
- Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabo M, Majumdar S, van Rijn RM: Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol. 2021 Nov 3;12:764885. doi: 10.3389/fphar.2021.764885. eCollection 2021. [PubMed:34803709 ]
- Leon F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, Kamble SH, Restrepo LF, Patel A, Gamez-Jimenez LR, Lopera-Londono C, Hiranita T, Sharma A, Hampson AJ, Canal CE, McMahon LR, McCurdy CR: Activity of Mitragyna speciosa ("Kratom") Alkaloids at Serotonin Receptors. J Med Chem. 2021 Sep 23;64(18):13510-13523. doi: 10.1021/acs.jmedchem.1c00726. Epub 2021 Sep 1. [PubMed:34467758 ]
- Teh JL, Abdul Rahman SF, Domnic G, Satiyasilan L, Chear NJY, Singh D, Mohana-Kumaran N: Rapid spheroid assays in a 3-dimensional cell culture chip. BMC Res Notes. 2021 Aug 13;14(1):310. doi: 10.1186/s13104-021-05727-0. [PubMed:34389056 ]
- Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, Mohana-Kumaran N: Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. J Ethnopharmacol. 2021 Oct 28;279:114391. doi: 10.1016/j.jep.2021.114391. Epub 2021 Jul 2. [PubMed:34224811 ]
- Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S: Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of Its Cytotoxicity and Antinociceptive Activity. Molecules. 2021 Jun 17;26(12). pii: molecules26123704. doi: 10.3390/molecules26123704. [PubMed:34204457 ]
- Kamble SH, Sharma A, King TI, Berthold EC, Leon F, Meyer PKL, Kanumuri SRR, McMahon LR, McCurdy CR, Avery BA: Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicol Lett. 2020 Feb 1;319:148-154. doi: 10.1016/j.toxlet.2019.11.005. Epub 2019 Nov 7. [PubMed:31707106 ]
- Lee MJ, Ramanathan S, Mansor SM, Tan SC: Development of an ELISA for detection of mitragynine and its metabolites in human urine. Anal Biochem. 2020 Jun 15;599:113733. doi: 10.1016/j.ab.2020.113733. Epub 2020 Apr 14. [PubMed:32302607 ]
- Basiliere S, Kerrigan S: Temperature and pH-Dependent Stability of Mitragyna Alkaloids. J Anal Toxicol. 2020 May 18;44(4):314-324. doi: 10.1093/jat/bkz103. [PubMed:31897484 ]
- Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, Avery BA, Balasingam V: Patterns and reasons for kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. J Ethnopharmacol. 2020 Mar 1;249:112462. doi: 10.1016/j.jep.2019.112462. Epub 2019 Dec 7. [PubMed:31816368 ]
|
---|