Np mrd loader

Record Information
Version2.0
Created at2023-07-13 15:43:31 UTC
Updated at2024-09-03 04:16:36 UTC
NP-MRD IDNP0331714
Natural Product DOIhttps://doi.org/10.57994/0730
Secondary Accession NumbersNone
Natural Product Identification
Common NamePaynantheine
DescriptionPaynantheine belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group. Paynantheine was first documented in 2020 (PMID: 32597657). Based on a literature review a significant number of articles have been published on Paynantheine (PMID: 33620222) (PMID: 35472200) (PMID: 35468648) (PMID: 33408731) (PMID: 35335999) (PMID: 34803709).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC23H28N2O4
Average Mass396.4870 Da
Monoisotopic Mass396.20491 Da
IUPAC Namemethyl (2E)-2-[(2S,4S,5R)-5-ethenyl-12-methoxy-7,17-diazatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),11,13,15-tetraen-4-yl]-3-methoxyprop-2-enoate
Traditional Namemethyl (2E)-2-[(2S,4S,5R)-5-ethenyl-12-methoxy-7,17-diazatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),11,13,15-tetraen-4-yl]-3-methoxyprop-2-enoate
CAS Registry NumberNot Available
SMILES
CO\C=C(/[C@H]1C[C@@H]2N(CCC3=C2NC2=CC=CC(OC)=C32)C[C@@H]1C=C)C(=O)OC
InChI Identifier
InChI=1S/C23H28N2O4/c1-5-14-12-25-10-9-15-21-18(7-6-8-20(21)28-3)24-22(15)19(25)11-16(14)17(13-27-2)23(26)29-4/h5-8,13-14,16,19,24H,1,9-12H2,2-4H3/b17-13+/t14-,16-,19-/m0/s1
InChI KeyJGZKIGWXPPFMRG-CYSPOEIOSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 500 MHz, CDCl3, experimental)n_oberli@uncg.eduNot AvailableNot Available2023-07-13View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, CDCl3, experimental)n_oberli@uncg.eduNot AvailableNot Available2023-07-13View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
speciosa
      Not Available
Chemical Taxonomy
Description Belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group.
KingdomOrganic compounds
Super ClassAlkaloids and derivatives
ClassCorynanthean-type alkaloids
Sub ClassNot Available
Direct ParentCorynanthean-type alkaloids
Alternative Parents
Substituents
  • Corynanthean skeleton
  • Beta-carboline
  • Pyridoindole
  • Quinolizine
  • 3-alkylindole
  • Indole
  • Indole or derivatives
  • Anisole
  • Phenol ether
  • Alkyl aryl ether
  • Aralkylamine
  • Benzenoid
  • Piperidine
  • Heteroaromatic compound
  • Vinylogous ester
  • Alpha,beta-unsaturated carboxylic ester
  • Pyrrole
  • Enoate ester
  • Methyl ester
  • Amino acid or derivatives
  • Tertiary aliphatic amine
  • Tertiary amine
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Ether
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.18ALOGPS
logP3ChemAxon
logS-3.6ALOGPS
pKa (Strongest Acidic)16.67ChemAxon
pKa (Strongest Basic)6.9ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area63.79 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity112.96 m³·mol⁻¹ChemAxon
Polarizability44.54 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00025182
Chemspider ID2301316
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound3037629
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, Leon F, Sharma A, McMahon LR, Avery BA, McCurdy CR: Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. J Nat Prod. 2021 Apr 23;84(4):1104-1112. doi: 10.1021/acs.jnatprod.0c01163. Epub 2021 Feb 23. [PubMed:33620222 ]
  2. Flores-Bocanegra L, Raja HA, Graf TN, Augustinovic M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH: The Chemistry of Kratom [Mitragyna speciosa]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. J Nat Prod. 2020 Jul 24;83(7):2165-2177. doi: 10.1021/acs.jnatprod.0c00257. Epub 2020 Jun 29. [PubMed:32597657 ]
  3. Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Plant growth and phytoactive alkaloid synthesis in kratom [Mitragyna speciosa (Korth.)] in response to varying radiance. PLoS One. 2022 Apr 26;17(4):e0259326. doi: 10.1371/journal.pone.0259326. eCollection 2022. [PubMed:35472200 ]
  4. Manwill PK, Flores-Bocanegra L, Khin M, Raja HA, Cech NB, Oberlies NH, Todd DA: Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products. Planta Med. 2022 Apr 25. doi: 10.1055/a-1795-5876. [PubMed:35468648 ]
  5. Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Effects of Nutrient Fertility on Growth and Alkaloidal Content in Mitragyna speciosa (Kratom). Front Plant Sci. 2020 Dec 21;11:597696. doi: 10.3389/fpls.2020.597696. eCollection 2020. [PubMed:33408731 ]
  6. Tanna RS, Nguyen JT, Hadi DL, Manwill PK, Flores-Bocanegra L, Layton ME, White JR, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF: Clinical Pharmacokinetic Assessment of Kratom (Mitragyna speciosa), a Botanical Product with Opioid-like Effects, in Healthy Adult Participants. Pharmaceutics. 2022 Mar 11;14(3). pii: pharmaceutics14030620. doi: 10.3390/pharmaceutics14030620. [PubMed:35335999 ]
  7. Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabo M, Majumdar S, van Rijn RM: Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol. 2021 Nov 3;12:764885. doi: 10.3389/fphar.2021.764885. eCollection 2021. [PubMed:34803709 ]
  8. Leon F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, Kamble SH, Restrepo LF, Patel A, Gamez-Jimenez LR, Lopera-Londono C, Hiranita T, Sharma A, Hampson AJ, Canal CE, McMahon LR, McCurdy CR: Activity of Mitragyna speciosa ("Kratom") Alkaloids at Serotonin Receptors. J Med Chem. 2021 Sep 23;64(18):13510-13523. doi: 10.1021/acs.jmedchem.1c00726. Epub 2021 Sep 1. [PubMed:34467758 ]
  9. Teh JL, Abdul Rahman SF, Domnic G, Satiyasilan L, Chear NJY, Singh D, Mohana-Kumaran N: Rapid spheroid assays in a 3-dimensional cell culture chip. BMC Res Notes. 2021 Aug 13;14(1):310. doi: 10.1186/s13104-021-05727-0. [PubMed:34389056 ]
  10. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, Mohana-Kumaran N: Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. J Ethnopharmacol. 2021 Oct 28;279:114391. doi: 10.1016/j.jep.2021.114391. Epub 2021 Jul 2. [PubMed:34224811 ]
  11. Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S: Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of Its Cytotoxicity and Antinociceptive Activity. Molecules. 2021 Jun 17;26(12). pii: molecules26123704. doi: 10.3390/molecules26123704. [PubMed:34204457 ]
  12. Kamble SH, Sharma A, King TI, Berthold EC, Leon F, Meyer PKL, Kanumuri SRR, McMahon LR, McCurdy CR, Avery BA: Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicol Lett. 2020 Feb 1;319:148-154. doi: 10.1016/j.toxlet.2019.11.005. Epub 2019 Nov 7. [PubMed:31707106 ]
  13. Lee MJ, Ramanathan S, Mansor SM, Tan SC: Development of an ELISA for detection of mitragynine and its metabolites in human urine. Anal Biochem. 2020 Jun 15;599:113733. doi: 10.1016/j.ab.2020.113733. Epub 2020 Apr 14. [PubMed:32302607 ]
  14. Basiliere S, Kerrigan S: Temperature and pH-Dependent Stability of Mitragyna Alkaloids. J Anal Toxicol. 2020 May 18;44(4):314-324. doi: 10.1093/jat/bkz103. [PubMed:31897484 ]
  15. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, Avery BA, Balasingam V: Patterns and reasons for kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. J Ethnopharmacol. 2020 Mar 1;249:112462. doi: 10.1016/j.jep.2019.112462. Epub 2019 Dec 7. [PubMed:31816368 ]