Np mrd loader

Record Information
Version2.0
Created at2023-03-17 17:20:50 UTC
Updated at2024-09-03 04:16:04 UTC
NP-MRD IDNP0331537
Natural Product DOIhttps://doi.org/10.57994/0513
Secondary Accession NumbersNone
Natural Product Identification
Common NameEriocalyxin K
DescriptionSpeciociliatine belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group. Eriocalyxin K was first documented in 2020 (PMID: 32597657). Based on a literature review a significant number of articles have been published on Speciociliatine (PMID: 33620222) (PMID: 35472200) (PMID: 35468648) (PMID: 33408731) (PMID: 35335999) (PMID: 34803709).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC22H30O8
Average Mass422.4740 Da
Monoisotopic Mass422.19407 Da
IUPAC Namemethyl (2E)-2-[(2S,3S,12bR)-3-ethyl-8-methoxy-1H,2H,3H,4H,6H,7H,12H,12bH-indolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate
Traditional Namemethyl (2E)-2-[(2S,3S,12bR)-3-ethyl-8-methoxy-1H,2H,3H,4H,6H,7H,12H,12bH-indolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate
CAS Registry NumberNot Available
SMILES
[H][C@@]12C[C@]3(C(=O)[C@H]1C)C(=O)OC[C@@]14CC[C@H](OC(C)=O)[C@@](C)(CO)[C@@]1([H])C(O)O[C@H](C2)[C@]34[H]
InChI Identifier
InChI=1S/C22H30O8/c1-10-12-6-13-15-21(9-28-19(27)22(15,7-12)17(10)25)5-4-14(29-11(2)24)20(3,8-23)16(21)18(26)30-13/h10,12-16,18,23,26H,4-9H2,1-3H3/t10-,12+,13+,14-,15-,16+,18?,20+,21+,22-/m0/s1
InChI KeyPYFIJXXKLSSPNC-NVIRHUQUSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 300.11, C5D5deposition_typeN, simulated)Not AvailableNot AvailableNot Available2024-05-11View Spectrum
Species
Species of Origin
Species NameSourceReference
eriocalyx
      Not Available
Chemical Taxonomy
Description Belongs to the class of organic compounds known as corynanthean-type alkaloids. These are alkaloids with a structure based on the corynanthean nucleus, which is a tetracycle characterized by an indole fused to a quinolizidine. Additionally, the quinolizidine ring system is substituted to a 2-methylpropyl group and one ethyl group.
KingdomOrganic compounds
Super ClassAlkaloids and derivatives
ClassCorynanthean-type alkaloids
Sub ClassNot Available
Direct ParentCorynanthean-type alkaloids
Alternative Parents
Substituents
  • Corynanthean skeleton
  • Beta-carboline
  • Pyridoindole
  • Quinolizine
  • 3-alkylindole
  • Indole
  • Indole or derivatives
  • Anisole
  • Phenol ether
  • Alkyl aryl ether
  • Aralkylamine
  • Benzenoid
  • Piperidine
  • Heteroaromatic compound
  • Vinylogous ester
  • Alpha,beta-unsaturated carboxylic ester
  • Pyrrole
  • Enoate ester
  • Methyl ester
  • Amino acid or derivatives
  • Tertiary aliphatic amine
  • Tertiary amine
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Azacycle
  • Ether
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP4ALOGPS
logP3.3ChemAxon
logS-4.1ALOGPS
pKa (Strongest Acidic)16.67ChemAxon
pKa (Strongest Basic)7.04ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area63.79 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity112.91 m³·mol⁻¹ChemAxon
Polarizability45.35 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00025209
Chemspider ID20124314
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkSpeciociliatine
METLIN IDNot Available
PubChem Compound15560576
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, Leon F, Sharma A, McMahon LR, Avery BA, McCurdy CR: Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. J Nat Prod. 2021 Apr 23;84(4):1104-1112. doi: 10.1021/acs.jnatprod.0c01163. Epub 2021 Feb 23. [PubMed:33620222 ]
  2. Flores-Bocanegra L, Raja HA, Graf TN, Augustinovic M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH: The Chemistry of Kratom [Mitragyna speciosa]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. J Nat Prod. 2020 Jul 24;83(7):2165-2177. doi: 10.1021/acs.jnatprod.0c00257. Epub 2020 Jun 29. [PubMed:32597657 ]
  3. Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Plant growth and phytoactive alkaloid synthesis in kratom [Mitragyna speciosa (Korth.)] in response to varying radiance. PLoS One. 2022 Apr 26;17(4):e0259326. doi: 10.1371/journal.pone.0259326. eCollection 2022. [PubMed:35472200 ]
  4. Manwill PK, Flores-Bocanegra L, Khin M, Raja HA, Cech NB, Oberlies NH, Todd DA: Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products. Planta Med. 2022 Apr 25. doi: 10.1055/a-1795-5876. [PubMed:35468648 ]
  5. Zhang M, Sharma A, Leon F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ: Effects of Nutrient Fertility on Growth and Alkaloidal Content in Mitragyna speciosa (Kratom). Front Plant Sci. 2020 Dec 21;11:597696. doi: 10.3389/fpls.2020.597696. eCollection 2020. [PubMed:33408731 ]
  6. Tanna RS, Nguyen JT, Hadi DL, Manwill PK, Flores-Bocanegra L, Layton ME, White JR, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF: Clinical Pharmacokinetic Assessment of Kratom (Mitragyna speciosa), a Botanical Product with Opioid-like Effects, in Healthy Adult Participants. Pharmaceutics. 2022 Mar 11;14(3). pii: pharmaceutics14030620. doi: 10.3390/pharmaceutics14030620. [PubMed:35335999 ]
  7. Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabo M, Majumdar S, van Rijn RM: Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol. 2021 Nov 3;12:764885. doi: 10.3389/fphar.2021.764885. eCollection 2021. [PubMed:34803709 ]
  8. Hughs M, Kish-Trier E, O'Brien A, McMillin GA: Analysis of Mitragynine and Speciociliatine in Umbilical Cord by LC-MS/MS for Detecting Prenatal Exposure to Kratom. J Anal Toxicol. 2022 Sep 1. pii: 6680066. doi: 10.1093/jat/bkac064. [PubMed:36047661 ]
  9. Karunakaran T, Ngew KZ, Zailan AAD, Mian Jong VY, Abu Bakar MH: The Chemical and Pharmacological Properties of Mitragynine and Its Diastereomers: An Insight Review. Front Pharmacol. 2022 Feb 24;13:805986. doi: 10.3389/fphar.2022.805986. eCollection 2022. [PubMed:35281925 ]
  10. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, Mohana-Kumaran N: Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. J Ethnopharmacol. 2021 Oct 28;279:114391. doi: 10.1016/j.jep.2021.114391. Epub 2021 Jul 2. [PubMed:34224811 ]
  11. Berthold EC, Kamble SH, Raju KS, King TI, Popa R, Sharma A, Leon F, Avery BA, McMahon LR, McCurdy CR: Preclinical pharmacokinetic study of speciociliatine, a kratom alkaloid, in rats using an UPLC-MS/MS method. J Pharm Biomed Anal. 2021 Feb 5;194:113778. doi: 10.1016/j.jpba.2020.113778. Epub 2020 Nov 21. [PubMed:33277117 ]
  12. Kamble SH, Berthold EC, Kanumuri SRR, King TI, Kuntz MA, Leon F, Mottinelli M, McMahon LR, McCurdy CR, Sharma A: Metabolism of Speciociliatine, an Overlooked Kratom Alkaloid for its Potential Pharmacological Effects. AAPS J. 2022 Jul 19;24(5):86. doi: 10.1208/s12248-022-00736-8. [PubMed:35854066 ]
  13. Damodaran T, Chear NJ, Murugaiyah V, Mordi MN, Ramanathan S: Comparative Toxicity Assessment of Kratom Decoction, Mitragynine and Speciociliatine Versus Morphine on Zebrafish (Danio rerio) Embryos. Front Pharmacol. 2021 Aug 20;12:714918. doi: 10.3389/fphar.2021.714918. eCollection 2021. [PubMed:34489704 ]
  14. Lee MJ, Ramanathan S, Mansor SM, Tan SC: Development of an ELISA for detection of mitragynine and its metabolites in human urine. Anal Biochem. 2020 Jun 15;599:113733. doi: 10.1016/j.ab.2020.113733. Epub 2020 Apr 14. [PubMed:32302607 ]
  15. Basiliere S, Kerrigan S: Identification of metabolites and potential biomarkers of kratom in urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Mar 1;1140:121971. doi: 10.1016/j.jchromb.2020.121971. Epub 2020 Jan 11. [PubMed:32058315 ]
  16. Mu L, Li T, Wu PL, Cai LQ, Li SY, Wang ZY, Liu YY, Wang J, Yan D, Rao ZY, Wang CJ, Zhang J, Cao Y, Pan K, Yin ZQ: 5-epi-ent-Kaurane diterpenoids from the aerial parts of Isodon eriocalyx and their anti-atherosclerotic potential. Phytochemistry. 2023 May;209:113621. doi: 10.1016/j.phytochem.2023.113621. Epub 2023 Mar 7. [PubMed:36893826 ]