Np mrd loader

Record Information
Version1.0
Created at2022-09-12 12:16:38 UTC
Updated at2022-09-12 12:16:38 UTC
NP-MRD IDNP0328632
Secondary Accession NumbersNone
Natural Product Identification
Common Name(+)-α-thujene
Description(+)-Alpha-thujene belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-alpha-thujene is considered to be an isoprenoid. (+)-α-thujene is found in Acorus calamus, Chamaecyparis formosensis, Citrus aurantiifolia, Citrus reticulata, Cryptotaenia japonica, Mosla chinensis, Myrtus communis, Persicaria minor, Piper aduncum and Tanacetum vulgare. It was first documented in 2022 (PMID: 36091238). Based on a literature review a significant number of articles have been published on (+)-alpha-thujene (PMID: 36080231) (PMID: 35999251) (PMID: 35642401) (PMID: 35567189).
Structure
Thumb
Synonyms
ValueSource
(1S,5R)-5-Isopropyl-2-methylbicyclo[3.1.0]hex-2-eneChEBI
(+)-a-ThujeneGenerator
(+)-Α-thujeneGenerator
Chemical FormulaC10H16
Average Mass136.2380 Da
Monoisotopic Mass136.12520 Da
IUPAC Name(1S)-2-methyl-5-(propan-2-yl)bicyclo[3.1.0]hex-2-ene
Traditional Name(+)-α-thujene
CAS Registry NumberNot Available
SMILES
CC(C)[C@]12C[C@H]1C(C)=CC2
InChI Identifier
InChI=1S/C10H16/c1-7(2)10-5-4-8(3)9(10)6-10/h4,7,9H,5-6H2,1-3H3/t9-,10-/m0/s1
InChI KeyKQAZVFVOEIRWHN-UWVGGRQHSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Acorus calamusLOTUS Database
Chamaecyparis formosensisLOTUS Database
Citrus aurantiifoliaLOTUS Database
Citrus reticulataLOTUS Database
Cryptotaenia japonicaLOTUS Database
Mosla chinensisLOTUS Database
Myrtus communisLOTUS Database
Persicaria minorLOTUS Database
Piper aduncumLOTUS Database
Tanacetum vulgareLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassMonoterpenoids
Direct ParentBicyclic monoterpenoids
Alternative Parents
Substituents
  • Bicyclic monoterpenoid
  • Thujane monoterpenoid
  • Branched unsaturated hydrocarbon
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity44.72 m³·mol⁻¹ChemAxon
Polarizability17.38 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID21865693
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound12444324
PDB IDNot Available
ChEBI ID50032
Good Scents IDNot Available
References
General References
  1. Fu M, Wang Y, Yu Y, Wen J, Cheong MS, Cheang WS, Wu J: Changes of volatile substance composition during processing of nine-processed tangerine peel (Jiuzhi Chenpi) determined by gas chromatography-ion mobility spectrometry. Front Nutr. 2022 Aug 24;9:963655. doi: 10.3389/fnut.2022.963655. eCollection 2022. [PubMed:36091238 ]
  2. de Moraes AAB, de Jesus Pereira Franco C, Ferreira OO, Varela ELP, do Nascimento LD, Cascaes MM, da Silva DRP, Percario S, de Oliveira MS, de Aguiar Andrade EH: Myrcia paivae O.Berg (Myrtaceae) Essential Oil, First Study of the Chemical Composition and Antioxidant Potential. Molecules. 2022 Aug 25;27(17). pii: molecules27175460. doi: 10.3390/molecules27175460. [PubMed:36080231 ]
  3. Ghassemi-Golezani K, Nikpour-Rashidabad N, Samea-Andabjadid S: Application of growth promoting hormones alters the composition and antioxidant potential of dill essential oil under salt stress. Sci Rep. 2022 Aug 23;12(1):14349. doi: 10.1038/s41598-022-18717-4. [PubMed:35999251 ]
  4. Rasool S, Uttra MM, Saleem M, Ahmad F, Younus M, Abbas K, Amanullah -, Amin A: Determination of antioxidant and bimolecular protective effect of Berberis calliobotrys Aitch. ex Koehne extracts and essential oil against H2O2 induced oxidative damage to pBR 322 DNA and RBCs. Pak J Pharm Sci. 2022 Mar;35(2):465-471. [PubMed:35642401 ]
  5. Salinas M, Calva J, Cartuche L, Valarezo E, Armijos C: Chemical Composition, Enantiomeric Distribution and Anticholinesterase and Antioxidant Activity of the Essential Oil of Diplosthephium juniperinum. Plants (Basel). 2022 Apr 28;11(9). pii: plants11091188. doi: 10.3390/plants11091188. [PubMed:35567189 ]
  6. LOTUS database [Link]