Np mrd loader

Record Information
Version2.0
Created at2022-09-12 08:18:14 UTC
Updated at2022-09-12 08:18:14 UTC
NP-MRD IDNP0326599
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1r,3s,4s,5s)-1,3,4-trihydroxy-5-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
DescriptionP-Coumaroylquinic acid belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, And 5, as well as a carboxylic acid at position 1. (1r,3s,4s,5s)-1,3,4-trihydroxy-5-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid is found in Eucalyptus globulus. (1r,3s,4s,5s)-1,3,4-trihydroxy-5-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid was first documented in 2021 (PMID: 33509477). Based on a literature review a significant number of articles have been published on p-Coumaroylquinic acid (PMID: 34403995) (PMID: 35956511) (PMID: 35761534) (PMID: 35686688) (PMID: 35400430) (PMID: 35123329).
Structure
Thumb
Synonyms
ValueSource
p-CoumaroylquinateGenerator
Chemical FormulaC16H18O8
Average Mass338.3120 Da
Monoisotopic Mass338.10017 Da
IUPAC Name(1R,3S,4S,5S)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
Traditional Name(1R,3S,4S,5S)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid
CAS Registry NumberNot Available
SMILES
O[C@H]1C[C@@](O)(C[C@H](OC(=O)\C=C\C2=CC=C(O)C=C2)[C@H]1O)C(O)=O
InChI Identifier
InChI=1S/C16H18O8/c17-10-4-1-9(2-5-10)3-6-13(19)24-12-8-16(23,15(21)22)7-11(18)14(12)20/h1-6,11-12,14,17-18,20,23H,7-8H2,(H,21,22)/b6-3+/t11-,12-,14-,16+/m0/s1
InChI KeyBMRSEYFENKXDIS-LUTKEZBSSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Eucalyptus globulusLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, And 5, as well as a carboxylic acid at position 1.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassAlcohols and polyols
Direct ParentQuinic acids and derivatives
Alternative Parents
Substituents
  • Coumaric acid ester
  • Quinic acid
  • Cinnamic acid or derivatives
  • Coumaric acid or derivatives
  • Hydroxycinnamic acid or derivatives
  • Cinnamic acid ester
  • Styrene
  • Phenol
  • Fatty acid ester
  • Cyclohexanol
  • 1-hydroxy-2-unsubstituted benzenoid
  • Fatty acyl
  • Benzenoid
  • Alpha-hydroxy acid
  • Monocyclic benzene moiety
  • Hydroxy acid
  • Dicarboxylic acid or derivatives
  • Enoate ester
  • Tertiary alcohol
  • Alpha,beta-unsaturated carboxylic ester
  • Secondary alcohol
  • Carboxylic acid ester
  • Carboxylic acid
  • Carboxylic acid derivative
  • Polyol
  • Carbonyl group
  • Organic oxide
  • Hydrocarbon derivative
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.035ChemAxon
pKa (Strongest Acidic)3.36ChemAxon
pKa (Strongest Basic)-3.2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area144.52 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity81.25 m³·mol⁻¹ChemAxon
Polarizability32.58 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00002730
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound14158103
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Pereira APA, Angolini CFF, Adani HB, Usberti FCS, Paulino BN, Clerici MTPS, Neri-Numa IA, Moro TMA, Eberlin MN, Pastore GM: Impact of ripening on the health-promoting components from fruta-do-lobo (Solanum lycocarpum St. Hill). Food Res Int. 2021 Jan;139:109910. doi: 10.1016/j.foodres.2020.109910. Epub 2020 Nov 24. [PubMed:33509477 ]
  2. Wen M, Han Z, Cui Y, Ho CT, Wan X, Zhang L: Identification of 4-O-p-coumaroylquinic acid as astringent compound of Keemun black tea by efficient integrated approaches of mass spectrometry, turbidity analysis and sensory evaluation. Food Chem. 2021 Aug 8;368:130803. doi: 10.1016/j.foodchem.2021.130803. [PubMed:34403995 ]
  3. Martin-Garcia B, Aznar-Ramos MJ, Verardo V, Gomez-Caravaca AM: Development of an Effective Sonotrode Based Extraction Technique for the Recovery of Phenolic Compounds with Antioxidant Activities in Cherimoya Leaves. Plants (Basel). 2022 Aug 4;11(15):2034. doi: 10.3390/plants11152034. [PubMed:35956511 ]
  4. Li Q, Yang S, Li B, Zhang C, Li Y, Li J: Exploring critical metabolites of honey peach (Prunus persica (L.) Batsch) from five main cultivation regions in the north of China by UPLC-Q-TOF/MS combined with chemometrics and modeling. Food Res Int. 2022 Jul;157:111213. doi: 10.1016/j.foodres.2022.111213. Epub 2022 Apr 4. [PubMed:35761534 ]
  5. Alonso-Salces RM, Berrueta LA, Abad-Garcia B, Sasia-Arriba A, Asensio-Regalado C, Dapena E, Gallo B: Untargeted Metabolomic Liquid Chromatography High-Resolution Mass Spectrometry Fingerprinting of Apple Cultivars for the Identification of Biomarkers Related to Resistance to Rosy Apple Aphid. J Agric Food Chem. 2022 Oct 19;70(41):13071-13081. doi: 10.1021/acs.jafc.2c00738. Epub 2022 Jun 10. [PubMed:35686688 ]
  6. Lai G, Cui Y, Granato D, Wen M, Han Z, Zhang L: Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing. Food Res Int. 2022 May;155:111041. doi: 10.1016/j.foodres.2022.111041. Epub 2022 Feb 21. [PubMed:35400430 ]
  7. de Faria RA, Oliveira PCO, de Carvalho MDP, Peixoto BS, Severino VGP, Tinoco LW, Rodrigues SV, de Moraes MC: High-resolution inhibition profiling and ligand fishing for screening of nucleoside hydrolase ligands in Moringa oleifera Lamarck. J Pharm Biomed Anal. 2022 Mar 20;211:114614. doi: 10.1016/j.jpba.2022.114614. Epub 2022 Jan 29. [PubMed:35123329 ]
  8. Ockun MA, Gercek YC, Demirsoy H, Demirsoy L, Macit I, Oz GC: Comparative evaluation of phenolic profile and antioxidant activity of new sweet cherry (Prunus avium L.) genotypes in Turkey. Phytochem Anal. 2022 Jun;33(4):564-576. doi: 10.1002/pca.3110. Epub 2022 Feb 4. [PubMed:35122339 ]
  9. Jose S, Gupta M, Sharma U, Quintero-Saumeth J, Dwivedi M: Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structural and molecular insights. J Mol Struct. 2022 Apr 15;1254:132369. doi: 10.1016/j.molstruc.2022.132369. Epub 2022 Jan 8. [PubMed:35034979 ]
  10. He W, Laaksonen O, Tian Y, Heinonen M, Bitz L, Yang B: Phenolic compound profiles in Finnish apple (Malus x domestica Borkh.) juices and ciders fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe strains. Food Chem. 2022 Mar 30;373(Pt B):131437. doi: 10.1016/j.foodchem.2021.131437. Epub 2021 Oct 20. [PubMed:34749087 ]
  11. Kiselova-Kaneva Y, Galunska B, Nikolova M, Dincheva I, Badjakov I: High resolution LC-MS/MS characterization of polyphenolic composition and evaluation of antioxidant activity of Sambucus ebulus fruit tea traditionally used in Bulgaria as a functional food. Food Chem. 2022 Jan 15;367:130759. doi: 10.1016/j.foodchem.2021.130759. Epub 2021 Aug 3. [PubMed:34375888 ]
  12. Hutachok N, Koonyosying P, Pankasemsuk T, Angkasith P, Chumpun C, Fucharoen S, Srichairatanakool S: Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee (Coffea arabica) Extracts. Molecules. 2021 Jul 8;26(14):4169. doi: 10.3390/molecules26144169. [PubMed:34299444 ]
  13. Nomura T, Yoneda A, Ogita S, Kato Y: Activation of Cryptic Secondary Metabolite Biosynthesis in Bamboo Suspension Cells by a Histone Deacetylase Inhibitor. Appl Biochem Biotechnol. 2021 Nov;193(11):3496-3511. doi: 10.1007/s12010-021-03629-2. Epub 2021 Jul 21. [PubMed:34287751 ]
  14. Bambace MF, Del Rosario Moreira M, Sanchez-Moreno C, De Ancos B: Effects of combined application of high-pressure processing and active coatings on phenolic compounds and microbiological and physicochemical quality of apple cubes. J Sci Food Agric. 2021 Aug 15;101(10):4256-4265. doi: 10.1002/jsfa.11065. Epub 2021 Jan 28. [PubMed:33421116 ]
  15. LOTUS database [Link]