| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-12 07:23:04 UTC |
|---|
| Updated at | 2022-09-12 07:23:04 UTC |
|---|
| NP-MRD ID | NP0326109 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | ophiobolin |
|---|
| Description | Ophiobolin A belongs to the class of organic compounds known as ophiobolane sesterterpenoids. These are sesterterpnoids with a structure based on the ophiobolane backbone. Ophiobolane is a tricyclic compound consisting of two cyclopentane rings joined by a cyclooctane ring, and carries a methyl group at the 1-, 4-, and 8-position, as well as a 6-methylheptane group at the 12-position. Thus, ophiobolin a is considered to be an isoprenoid. ophiobolin is found in Bipolaris sorghicola and Drechslera gigantea. ophiobolin was first documented in 2021 (PMID: 34681916). Based on a literature review a small amount of articles have been published on ophiobolin A (PMID: 35944279) (PMID: 34461097) (PMID: 34307350) (PMID: 34158349). |
|---|
| Structure | C[C@H]1C[C@@H](O[C@@]11CC[C@]2(C)C[C@H]3[C@H](C(=O)C[C@@]3(C)O)\C(C=O)=C/C[C@@H]12)C=C(C)C InChI=1S/C25H36O4/c1-15(2)10-18-11-16(3)25(29-18)9-8-23(4)12-19-22(20(27)13-24(19,5)28)17(14-26)6-7-21(23)25/h6,10,14,16,18-19,21-22,28H,7-9,11-13H2,1-5H3/b17-6-/t16-,18-,19-,21+,22+,23+,24+,25-/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (18R)-14,18-Epoxy-3-hydroxy-5-oxoophiobola-7,19-dien-25-al | ChEBI | | Cochliobolin | ChEBI | | Cochliobolin a | ChEBI | | Ophiobolin | ChEBI |
|
|---|
| Chemical Formula | C25H36O4 |
|---|
| Average Mass | 400.5590 Da |
|---|
| Monoisotopic Mass | 400.26136 Da |
|---|
| IUPAC Name | (1'S,2S,3S,3'R,5R,7'R,9'E,11'S,14'R)-14'-hydroxy-3,3',14'-trimethyl-5-(2-methylprop-1-en-1-yl)-12'-oxospiro[oxolane-2,6'-tricyclo[9.3.0.0^{3,7}]tetradecan]-9'-ene-10'-carbaldehyde |
|---|
| Traditional Name | (1'S,2S,3S,3'R,5R,7'R,9'E,11'S,14'R)-14'-hydroxy-3,3',14'-trimethyl-5-(2-methylprop-1-en-1-yl)-12'-oxospiro[oxolane-2,6'-tricyclo[9.3.0.0^{3,7}]tetradecan]-9'-ene-10'-carbaldehyde |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@H]1C[C@@H](O[C@@]11CC[C@]2(C)C[C@H]3[C@H](C(=O)C[C@@]3(C)O)\C(C=O)=C/C[C@@H]12)C=C(C)C |
|---|
| InChI Identifier | InChI=1S/C25H36O4/c1-15(2)10-18-11-16(3)25(29-18)9-8-23(4)12-19-22(20(27)13-24(19,5)28)17(14-26)6-7-21(23)25/h6,10,14,16,18-19,21-22,28H,7-9,11-13H2,1-5H3/b17-6-/t16-,18-,19-,21+,22+,23+,24+,25-/m0/s1 |
|---|
| InChI Key | MWYYLZRWWNBROW-BDZRSQQBSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as ophiobolane sesterterpenoids. These are sesterterpnoids with a structure based on the ophiobolane backbone. Ophiobolane is a tricyclic compound consisting of two cyclopentane rings joined by a cyclooctane ring, and carries a methyl group at the 1-, 4-, and 8-position, as well as a 6-methylheptane group at the 12-position. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesterterpenoids |
|---|
| Direct Parent | Ophiobolane sesterterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Ophiobolane sesterterpenoid
- Cyclic alcohol
- Tertiary alcohol
- Tetrahydrofuran
- Ketone
- Organoheterocyclic compound
- Ether
- Dialkyl ether
- Oxacycle
- Aldehyde
- Organooxygen compound
- Organic oxygen compound
- Alcohol
- Carbonyl group
- Hydrocarbon derivative
- Organic oxide
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Law JA, Callen DP, Paola EL, Gomes G, Frederich JH: A Stereoselective Photoinduced Cycloisomerization Inspired by Ophiobolin A. Org Lett. 2022 Sep 16;24(36):6499-6504. doi: 10.1021/acs.orglett.2c02272. Epub 2022 Aug 9. [PubMed:35944279 ]
- Maslivetc V, Laguera B, Chandra S, Dasari R, Olivier WJ, Smith JA, Bissember AC, Masi M, Evidente A, Mathieu V, Kornienko A: Polygodial and Ophiobolin A Analogues for Covalent Crosslinking of Anticancer Targets. Int J Mol Sci. 2021 Oct 19;22(20):11256. doi: 10.3390/ijms222011256. [PubMed:34681916 ]
- Amini M, Chang Y, Wissenbach U, Flockerzi V, Schlenstedt G, Beck A: Activity of the yeast vacuolar TRP channel TRPY1 is inhibited by Ca(2+)-calmodulin binding. J Biol Chem. 2021 Oct;297(4):101126. doi: 10.1016/j.jbc.2021.101126. Epub 2021 Aug 28. [PubMed:34461097 ]
- Okutachi S, Manoharan GB, Kiriazis A, Laurini C, Catillon M, McCormick F, Yli-Kauhaluoma J, Abankwa D: A Covalent Calmodulin Inhibitor as a Tool to Study Cellular Mechanisms of K-Ras-Driven Stemness. Front Cell Dev Biol. 2021 Jul 8;9:665673. doi: 10.3389/fcell.2021.665673. eCollection 2021. [PubMed:34307350 ]
- Durrant DE, Smith EA, Goncharova EI, Sharma N, Alexander PA, Stephen AG, Henrich CJ, Morrison DK: Development of a High-throughput NanoBRET Screening Platform to Identify Modulators of the RAS/RAF Interaction. Mol Cancer Ther. 2021 Sep;20(9):1743-1754. doi: 10.1158/1535-7163.MCT-21-0175. Epub 2021 Jun 22. [PubMed:34158349 ]
- LOTUS database [Link]
|
|---|