Np mrd loader

Record Information
Version2.0
Created at2022-09-12 05:34:54 UTC
Updated at2022-09-12 05:34:54 UTC
NP-MRD IDNP0325092
Secondary Accession NumbersNone
Natural Product Identification
Common Name(6r)-6-[(1r,3as,3br,9as,9bs,11ar)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-3-isopropylhepta-1,3-dien-1-ol
DescriptionStigmastadienol belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. (6r)-6-[(1r,3as,3br,9as,9bs,11ar)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-3-isopropylhepta-1,3-dien-1-ol is found in Hippophae rhamnoides. It was first documented in 2008 (PMID: 26049228). Based on a literature review a significant number of articles have been published on Stigmastadienol (PMID: 36130844) (PMID: 36130843) (PMID: 36130842) (PMID: 36130841) (PMID: 36130840) (PMID: 36130836).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC29H48O
Average Mass412.7020 Da
Monoisotopic Mass412.37052 Da
IUPAC Name(6R)-6-[(1S,2S,10R,11S,14R,15R)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-3-(propan-2-yl)hepta-1,3-dien-1-ol
Traditional Name(6R)-6-[(1S,2S,10R,11S,14R,15R)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-3-isopropylhepta-1,3-dien-1-ol
CAS Registry NumberNot Available
SMILES
C[C@H](CC=C(C=CO)C(C)C)[C@H]1CC[C@H]2[C@@H]3CCC4CCCC[C@]4(C)[C@H]3CC[C@]12C
InChI Identifier
InChI=1S/C29H48O/c1-20(2)22(16-19-30)10-9-21(3)25-13-14-26-24-12-11-23-8-6-7-17-28(23,4)27(24)15-18-29(25,26)5/h10,16,19-21,23-27,30H,6-9,11-15,17-18H2,1-5H3/t21-,23?,24+,25-,26+,27+,28+,29-/m1/s1
InChI KeyDSOKBBPJHVYCBQ-KZSQEHGRSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Hippophae rhamnoidesLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassStigmastanes and derivatives
Direct ParentStigmastanes and derivatives
Alternative Parents
Substituents
  • Triterpenoid
  • Stigmastane-skeleton
  • Enol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP8.34ChemAxon
pKa (Strongest Acidic)8.76ChemAxon
pKa (Strongest Basic)-5.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity130.12 m³·mol⁻¹ChemAxon
Polarizability52.56 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00061284
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound129636643
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Cani I, Righini M, Cenni P, Foschi M: Teaching NeuroImage: Partially Reversible Widespread Leukoencephalopathy Associated With Atypical Hemolytic Uremic Syndrome. Neurology. 2022 Sep 21. pii: WNL.0000000000201378. doi: 10.1212/WNL.0000000000201378. [PubMed:36130844 ]
  2. Sasaki R, Morimoto S, Ozawa F, Okano H, Yoshida M, Ishiura H, Tsuji S, Kuzuhara S, Kokubo Y: APOE Alleles With Tau and Abeta Pathology In Patients With Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex in the Kii Peninsula. Neurology. 2022 Sep 21. pii: WNL.0000000000201156. doi: 10.1212/WNL.0000000000201156. [PubMed:36130843 ]
  3. Zhang Z, Wang M, Gill D, Liu X: Genetically Predicted Smoking and Alcohol Consumption and Functional Outcome After Ischemic Stroke. Neurology. 2022 Sep 21. pii: WNL.0000000000201291. doi: 10.1212/WNL.0000000000201291. [PubMed:36130842 ]
  4. Khamis S, Mitakidou MR, Champion M, Goyal S, Jones RL, Siddiqui A, Sabanathan S, Hedderly T, Lin JP, Jungbluth H, Papandreou A: Clinical Reasoning: A Teenage Girl With Progressive Hyperkinetic Movements, Seizures, and Encephalopathy. Neurology. 2022 Sep 21. pii: WNL.0000000000201385. doi: 10.1212/WNL.0000000000201385. [PubMed:36130841 ]
  5. Rosenberg A, Ohlund-Wistbacka U, Hall A, Bonnard A, Hagman G, Ryden M, Thunborg C, Wiggenraad F, Sandebring-Matton A, Solomon A, Kivipelto M: beta-Amyloid, Tau, Neurodegeneration Classification and Eligibility for Anti-amyloid Treatment in a Memory Clinic Population. Neurology. 2022 Sep 21. pii: WNL.0000000000201043. doi: 10.1212/WNL.0000000000201043. [PubMed:36130840 ]
  6. Yu H, Cai G, Wu J, Li Q: Clinical Phenotypic Variability and Significance of Pneumolabyrinth After Tympanum-Penetrating Injury. Ear Nose Throat J. 2022 Sep 21:1455613221128132. doi: 10.1177/01455613221128132. [PubMed:36130836 ]
  7. Bedford J, Martin P, Crowe S, Wagstaff D, Santos C, Singleton G, Baumber R, Vindrola-Padros C, Vohra R, Swart M, Oliver CM, Dorey J, Leeman I, Moonesinghe SR: Development and internal validation of a model for postoperative morbidity in adults undergoing major elective colorectal surgery: the peri-operative quality improvement programme (PQIP) colorectal risk model. Anaesthesia. 2022 Sep 21. doi: 10.1111/anae.15858. [PubMed:36130834 ]
  8. Silverman A, Beres S: Child Neurology: Horner Syndrome in an Otherwise Well-Appearing Infant. Neurology. 2022 Sep 21. pii: WNL.0000000000201377. doi: 10.1212/WNL.0000000000201377. [PubMed:36130839 ]
  9. Harada Y, Wang SH, Juel VC: Clinical Reasoning: A 36-Year-Old Man With Asymmetric Muscle Weakness. Neurology. 2022 Sep 21. pii: WNL.0000000000201379. doi: 10.1212/WNL.0000000000201379. [PubMed:36130838 ]
  10. Guest O, Memon AA, Chukweubuka A, Zaheer M, Siddiqi N: Robotic low anterior resection for locally advanced rectal cancer - A video vignette. Colorectal Dis. 2022 Sep 21. doi: 10.1111/codi.16345. [PubMed:36130837 ]
  11. Pellicori P, Kalra PR, Clark AL, Friday JM, Cleland JGF: Chronic kidney disease (CKD) and CKD-ism in heart failure - what a mess! Eur J Heart Fail. 2022 Sep 21. doi: 10.1002/ejhf.2696. [PubMed:36130835 ]
  12. Ammar S, Kelebek H, Zribi A, Abichou M, Selli S, Bouaziz M: LC-DAD/ESI-MS/MS characterization of phenolic constituents in Tunisian extra-virgin olive oils: Effect of olive leaves addition on chemical composition. Food Res Int. 2017 Oct;100(Pt 3):477-485. doi: 10.1016/j.foodres.2016.11.001. Epub 2016 Nov 5. [PubMed:28964371 ]
  13. Balbino S, Vincek D, Trtanj I, Egredija D, Gajdos-Kljusuric J, Kraljic K, Obranovic M, Skevin D: Assessment of Pumpkin Seed Oil Adulteration Supported by Multivariate Analysis: Comparison of GC-MS, Colourimetry and NIR Spectroscopy Data. Foods. 2022 Mar 14;11(6):835. doi: 10.3390/foods11060835. [PubMed:35327258 ]
  14. Duman E, Ozcan MM: The influence of industrial refining stages on the physico-chemical properties, fatty acid composition and sterol contents in hazelnut oil. J Food Sci Technol. 2020 Jul;57(7):2501-2506. doi: 10.1007/s13197-020-04285-w. Epub 2020 Feb 3. [PubMed:32549600 ]
  15. Gornas P, Czubinski J, Rudzinska M, Grygier A, Ying Q, Chakradhari S, Sahu PK, Misina I, Urvaka E, Patel KS: Selected Uncommon Legumes as a Source of Essential Fatty Acids, Tocopherols, Tocotrienols, Sterols, Carotenoids, and Squalene. Plant Foods Hum Nutr. 2019 Mar;74(1):91-98. doi: 10.1007/s11130-018-0706-x. [PubMed:30552561 ]
  16. Montesano D, Blasi F, Simonetti MS, Santini A, Cossignani L: Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin. Foods. 2018 Mar 1;7(3):30. doi: 10.3390/foods7030030. [PubMed:29494522 ]
  17. Yuan X, Su Q, Wang H, Shi S, Liu L, Lv J, Wang S, Zhu L, Zhang H: Genetic Variants of the COL4A3 , COL4A4 , and COL4A5 Genes Contribute to Thinned Glomerular Basement Membrane Lesions in Sporadic IgA Nephropathy Patients. J Am Soc Nephrol. 2023 Jan 1;34(1):132-144. doi: 10.1681/ASN.2021111447. Epub 2022 Oct 5. [PubMed:36130833 ]
  18. Wu C, O'Keeffe C, Sanford J, Hagel J, Childs S, Evers G, Melbourne J, West C, Koch M, Cornia PB: Simple signature/countersignature shared-accountability quality improvement initiative to improve reliability of blood sample collection: an essential clinical task. BMJ Open Qual. 2022 Sep;11(3):e001765. doi: 10.1136/bmjoq-2021-001765. [PubMed:36130832 ]
  19. Soltana H, Tekaya M, Amri Z, El-Gharbi S, Nakbi A, Harzallah A, Mechri B, Hammami M: Characterization of fig achenes' oil of Ficus carica grown in Tunisia. Food Chem. 2016 Apr 1;196:1125-30. doi: 10.1016/j.foodchem.2015.10.053. Epub 2015 Oct 22. [PubMed:26593597 ]
  20. Kim JA, Son JH, Song SB, Yang SY, Kim YH: Sterols isolated from seeds of Panax ginseng and their antiinflammatory activities. Pharmacogn Mag. 2013 Apr;9(34):182-5. doi: 10.4103/0973-1296.111288. [PubMed:23772116 ]
  21. Lukic M, Lukic I, Krapac M, Sladonja B, Pilizota V: Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food Chem. 2013 Jan 1;136(1):251-8. doi: 10.1016/j.foodchem.2012.08.005. Epub 2012 Aug 11. [PubMed:23017420 ]
  22. Shin EC, Pegg RB, Phillips RD, Eitenmiller RR: Commercial peanut (Arachis hypogaea L.) cultivars in the United States: phytosterol composition. J Agric Food Chem. 2010 Aug 25;58(16):9137-46. doi: 10.1021/jf102150n. Epub 2010 Aug 2. [PubMed:20677801 ]
  23. Temime SB, Manai H, Methenni K, Baccouri B, Abaza L, Daoud D, Casas JS, Bueno EO, Zarrouk M: Sterolic composition of Chetoui virgin olive oil: Influence of geographical origin. Food Chem. 2008 Sep 15;110(2):368-74. doi: 10.1016/j.foodchem.2008.02.012. Epub 2008 Feb 14. [PubMed:26049228 ]
  24. LOTUS database [Link]