| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-12 02:55:01 UTC |
|---|
| Updated at | 2022-09-12 02:55:01 UTC |
|---|
| NP-MRD ID | NP0323469 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | auroglaucin |
|---|
| Description | Auroglaucin belongs to the class of organic compounds known as prenylated hydroquinones. These are quinones with a structure characterized by the hydroquinone ring substituted by an prenyl side-chain. auroglaucin is found in Aspergillus amstelodami and Aspergillus chevalieri. auroglaucin was first documented in 2020 (PMID: 33160255). Based on a literature review a small amount of articles have been published on Auroglaucin (PMID: 35205947) (PMID: 34436465) (PMID: 33552019) (PMID: 30623671). |
|---|
| Structure | C\C=C\C=C\C=C\C1=C(O)C=C(CC=C(C)C)C(O)=C1C=O InChI=1S/C19H22O3/c1-4-5-6-7-8-9-16-17(13-20)19(22)15(12-18(16)21)11-10-14(2)3/h4-10,12-13,21-22H,11H2,1-3H3/b5-4+,7-6+,9-8+ |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C19H22O3 |
|---|
| Average Mass | 298.3820 Da |
|---|
| Monoisotopic Mass | 298.15689 Da |
|---|
| IUPAC Name | 2-[(1E,3E,5E)-hepta-1,3,5-trien-1-yl]-3,6-dihydroxy-5-(3-methylbut-2-en-1-yl)benzaldehyde |
|---|
| Traditional Name | 2-[(1E,3E,5E)-hepta-1,3,5-trien-1-yl]-3,6-dihydroxy-5-(3-methylbut-2-en-1-yl)benzaldehyde |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C\C=C\C=C\C=C\C1=C(O)C=C(CC=C(C)C)C(O)=C1C=O |
|---|
| InChI Identifier | InChI=1S/C19H22O3/c1-4-5-6-7-8-9-16-17(13-20)19(22)15(12-18(16)21)11-10-14(2)3/h4-10,12-13,21-22H,11H2,1-3H3/b5-4+,7-6+,9-8+ |
|---|
| InChI Key | ZKBCBIRBLMTSPC-ZAJAATJQSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as prenylated hydroquinones. These are quinones with a structure characterized by the hydroquinone ring substituted by an prenyl side-chain. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Quinone and hydroquinone lipids |
|---|
| Direct Parent | Prenylated hydroquinones |
|---|
| Alternative Parents | |
|---|
| Substituents | - Prenylbenzoquinol
- Hydroxybenzaldehyde
- Benzaldehyde
- Benzoyl
- Hydroquinone
- Styrene
- Aryl-aldehyde
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- Benzenoid
- Monocyclic benzene moiety
- Vinylogous acid
- Organooxygen compound
- Aldehyde
- Organic oxygen compound
- Hydrocarbon derivative
- Organic oxide
- Aromatic homomonocyclic compound
|
|---|
| Molecular Framework | Aromatic homomonocyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Cai X, Xiao M, Zou X, Tang J, Huang B, Xue H: Separation of six antioxidants from Hypsizygus marmoreus by high-speed countercurrent chromatography utilizing an approach based upon the polarity parameter model. J Chromatogr A. 2020 Dec 6;1633:461650. doi: 10.1016/j.chroma.2020.461650. Epub 2020 Oct 29. [PubMed:33160255 ]
- Guo X, Chen F, Liu J, Shao Y, Wang X, Zhou Y: Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea. J Fungi (Basel). 2022 Feb 16;8(2):193. doi: 10.3390/jof8020193. [PubMed:35205947 ]
- Lee H, Lee S, Kyung S, Ryu J, Kang S, Park M, Lee C: Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites. 2021 Aug 8;11(8):524. doi: 10.3390/metabo11080524. [PubMed:34436465 ]
- Gao H, Wang Y, Luo Q, Yang L, He X, Wu J, Kachanuban K, Wilaipun P, Zhu W, Wang Y: Bioactive Metabolites From Acid-Tolerant Fungi in a Thai Mangrove Sediment. Front Microbiol. 2021 Jan 22;11:609952. doi: 10.3389/fmicb.2020.609952. eCollection 2020. [PubMed:33552019 ]
- Yurchenko AN, Smetanina OF, Ivanets EV, Phan TTH, Ngo NTD, Zhuravleva OI, Rasin AB, Dyshlovoy SA, Menchinskaya ES, Pislyagin EA, von Amsberg G, Afiyatullov SS, Yurchenko EA: Auroglaucin-related neuroprotective compounds from Vietnamese marine sediment-derived fungus Aspergillus niveoglaucus. Nat Prod Res. 2020 Sep;34(18):2589-2594. doi: 10.1080/14786419.2018.1547293. Epub 2019 Jan 9. [PubMed:30623671 ]
- LOTUS database [Link]
|
|---|