Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-12 00:20:59 UTC |
---|
Updated at | 2022-09-12 00:20:59 UTC |
---|
NP-MRD ID | NP0321897 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (4s,4ar,5s,5ar,6s,12ar)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboximidic acid |
---|
Description | Oxytetracycline, also known as geomycin or terramycin, belongs to the class of organic compounds known as tetracyclines. These are polyketides having an octahydrotetracene-2-carboxamide skeleton, substituted with many hydroxy and other groups. (4s,4ar,5s,5ar,6s,12ar)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboximidic acid is found in Streptomyces albidoflavus, Streptomyces lividans, Streptomyces rimosus, Streptomyces varsoviensis and Streptomyces venezuelae. (4s,4ar,5s,5ar,6s,12ar)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboximidic acid was first documented in 2022 (PMID: 36123536). Based on a literature review a significant number of articles have been published on oxytetracycline (PMID: 36118603) (PMID: 36108497) (PMID: 36104903) (PMID: 36103709) (PMID: 36100774) (PMID: 36097302). |
---|
Structure | CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C(O)C4=C(O)C=CC=C4[C@@]3(C)O)C(=O)[C@]2(O)C(O)=C(C(O)=N)C1=O InChI=1S/C22H24N2O9/c1-21(32)7-5-4-6-8(25)9(7)15(26)10-12(21)17(28)13-14(24(2)3)16(27)11(20(23)31)19(30)22(13,33)18(10)29/h4-6,12-14,17,25-26,28,30,32-33H,1-3H3,(H2,23,31)/t12-,13-,14+,17+,21-,22+/m1/s1 |
---|
Synonyms | Value | Source |
---|
Oxytetracid | MeSH | Oxytetracycline, (4a beta,5 beta,5a beta,12a beta)-isomer | MeSH | Geomycin | MeSH | Oxytetracycline anhydrous | MeSH | Oxytetracycline calcium | MeSH | Oxytetracycline, (5 beta)-isomer | MeSH | Oxytetracycline, anhydrous | MeSH | Oxytetracycline, calcium (1:1) salt | MeSH | Oxytetracycline, disodium salt, dihydrate | MeSH | Terramycin | MeSH | Bisolvomycin | MeSH | Hydroxytetracycline | MeSH | Oxyterracin | MeSH | Oxyterracine | MeSH | Oxytetracycline dihydrate | MeSH | Oxytetracycline hydrochloride | MeSH | Oxytetracycline monohydrochloride | MeSH | Oxytetracycline sulfate (2:1) | MeSH | Oxytetracycline, sodium salt | MeSH |
|
---|
Chemical Formula | C22H24N2O9 |
---|
Average Mass | 460.4390 Da |
---|
Monoisotopic Mass | 460.14818 Da |
---|
IUPAC Name | (4S,4aR,5S,5aR,6S,12aR)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-3,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboximidic acid |
---|
Traditional Name | (4S,4aR,5S,5aR,6S,12aR)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboximidic acid |
---|
CAS Registry Number | Not Available |
---|
SMILES | CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C(O)C4=C(O)C=CC=C4[C@@]3(C)O)C(=O)[C@]2(O)C(O)=C(C(O)=N)C1=O |
---|
InChI Identifier | InChI=1S/C22H24N2O9/c1-21(32)7-5-4-6-8(25)9(7)15(26)10-12(21)17(28)13-14(24(2)3)16(27)11(20(23)31)19(30)22(13,33)18(10)29/h4-6,12-14,17,25-26,28,30,32-33H,1-3H3,(H2,23,31)/t12-,13-,14+,17+,21-,22+/m1/s1 |
---|
InChI Key | OWFJMIVZYSDULZ-PXOLEDIWSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as tetracyclines. These are polyketides having an octahydrotetracene-2-carboxamide skeleton, substituted with many hydroxy and other groups. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Tetracyclines |
---|
Sub Class | Not Available |
---|
Direct Parent | Tetracyclines |
---|
Alternative Parents | |
---|
Substituents | - Tetracycline
- 1-naphthol
- Naphthalene
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Cyclohexenone
- Aralkylamine
- Benzenoid
- Cyclic alcohol
- Tertiary alcohol
- Vinylogous acid
- Cyclic ketone
- Tertiary aliphatic amine
- Tertiary amine
- Secondary alcohol
- Ketone
- Carboximidic acid
- Carboximidic acid derivative
- Polyol
- Enol
- Hydrocarbon derivative
- Organic oxygen compound
- Organic nitrogen compound
- Organonitrogen compound
- Organooxygen compound
- Alcohol
- Amine
- Organopnictogen compound
- Carbonyl group
- Organic oxide
- Aromatic homopolycyclic compound
|
---|
Molecular Framework | Aromatic homopolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Sarkar DJ, Mohanty D, Raut SS, Kumar Das B: Antibacterial properties and in silico modeling perspective of nano ZnO transported oxytetracycline-Zn(2+) complex [ZnOTc](+) against oxytetracycline-resistant Aeromonas hydrophila. J Antibiot (Tokyo). 2022 Nov;75(11):635-649. doi: 10.1038/s41429-022-00564-0. Epub 2022 Sep 20. [PubMed:36123536 ]
- Kalani M, Rahimi S, Zahraei Salehi T, Hajiaghaee R, Behnamifar A: Comparison the effects of probiotic and prebiotic as antibiotic alternatives on Salmonella colonization, performance, and egg quality in laying hens challenged with Salmonella enterica serotype Enteritidis. Iran J Vet Res. 2022;23(2):154-162. doi: 10.22099/IJVR.2022.40926.5932. [PubMed:36118603 ]
- Che H, Nie Y, Tian X, Li Y: New method for morphological identification and simultaneous quantification of multiple tetracyclines by a white fluorescent probe. J Hazard Mater. 2023 Jan 5;441:129956. doi: 10.1016/j.jhazmat.2022.129956. Epub 2022 Sep 9. [PubMed:36108497 ]
- Xu SJ, Chen XY, Wang XF, Sun HZ, Hou ZJ, Cheng JS, Yuan YJ: Artificial microbial consortium producing oxidases enhanced the biotransformation efficiencies of multi-antibiotics. J Hazard Mater. 2022 Oct 5;439:129674. doi: 10.1016/j.jhazmat.2022.129674. Epub 2022 Jul 25. [PubMed:36104903 ]
- Girard L, Li H, Feng C, Kijak PJ, Sklenka S, Smith S, Rasmussen S, Pugh C, McDermott S, Chiesa OA, Ward J, Hasbrouck E, Smith E, Lancaster V, Qiu J: Bridging of a Liquid Chromatography-Tandem Mass Spectrometry Method for Oxytetracycline, Chlortetracycline, and Tetracycline in Bovine Kidney with the Official Microbial Growth Inhibition Assay. J AOAC Int. 2022 Dec 22;106(1):73-87. doi: 10.1093/jaoacint/qsac104. [PubMed:36103709 ]
- Wang J, Yin L, Zheng W, Shi S, Hao W, Liu C, Zheng L: Lactobacillus rhamnosus GG normalizes gut dysmotility induced by environmental pollutants via affecting serotonin level in zebrafish larvae. World J Microbiol Biotechnol. 2022 Sep 14;38(12):222. doi: 10.1007/s11274-022-03409-y. [PubMed:36100774 ]
- Galecio JS, Escudero E, Corrales JC, Garcia-Romero E, de la Fe C, Hernandis V, Marin P: Susceptibility of caprine mastitis pathogens to tildipirosin, gamithromycin, oxytetracycline, and danofloxacin: effect of serum on the in vitro potency of current macrolides. World J Microbiol Biotechnol. 2022 Sep 13;38(12):221. doi: 10.1007/s11274-022-03407-0. [PubMed:36097302 ]
- Saric E, Quinn GA, Nalpas N, Paradzik T, Kazazic S, Filic Z, Semanjski M, Herron P, Hunter I, Macek B, Vujaklija D: Phosphoproteome Dynamics of Streptomyces rimosus during Submerged Growth and Antibiotic Production. mSystems. 2022 Oct 26;7(5):e0019922. doi: 10.1128/msystems.00199-22. Epub 2022 Sep 12. [PubMed:36094082 ]
- Maqbool U, Sasanya J, Shah MS, Chughtai MI, Hussain G: Radiotracer studies to isolate in-house receptors from poultry liver for multi-chemical hazard analysis in selected food and feed. J Environ Sci Health B. 2022;57(10):804-811. doi: 10.1080/03601234.2022.2120318. Epub 2022 Sep 11. [PubMed:36093934 ]
- Wang X, Wang X: UiO-66-NH(2) based fluorescent sensing for detection of tetracyclines in milk. RSC Adv. 2022 Aug 17;12(36):23427-23436. doi: 10.1039/d2ra04023a. eCollection 2022 Aug 16. [PubMed:36090428 ]
- Zhang J, Xia A, Yao D, Guo X, Lam SS, Huang Y, Zhu X, Zhu X, Liao Q: Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production. Bioresour Technol. 2022 Nov;363:127891. doi: 10.1016/j.biortech.2022.127891. Epub 2022 Sep 8. [PubMed:36089133 ]
- Matamoros V, Casas ME, Pastor E, Tadic D, Canameras N, Carazo N, Bayona JM: Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: Agricultural and human health implications. Environ Res. 2022 Dec;215(Pt 1):114237. doi: 10.1016/j.envres.2022.114237. Epub 2022 Sep 7. [PubMed:36084673 ]
- Li J, Li J, Zhang Y, Lu H: The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. Water Res. 2022 Oct 1;224:119050. doi: 10.1016/j.watres.2022.119050. Epub 2022 Sep 3. [PubMed:36084441 ]
- Lacasta D, Ruiz H, Ortin A, Villanueva-Saz S, Estrada-Pena A, Gonzalez JM, Ramos JJ, Ferrer LM, Benito AA, Labanda R, Malo C, Verde MT, Fernandez A, Ruiz de Arcaute M: Comparative Study of the Use of Doxycycline and Oxytetracycline to Treat Anaplasmosis in Fattening Lambs. Animals (Basel). 2022 Sep 2;12(17):2279. doi: 10.3390/ani12172279. [PubMed:36077999 ]
- Tang T, Chen Y, Du Y, Yao B, Liu M: Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. J Hazard Mater. 2023 Jan 5;441:129870. doi: 10.1016/j.jhazmat.2022.129870. Epub 2022 Aug 30. [PubMed:36063716 ]
- Jiang H, Qi Z, Wang Z: Electrochemical-enhanced Fe(3)O(4)/biochar activates peroxymonosulfate (E/nano-Fe(3)O(4)/BC/PMS) for degradation of oxytetracycline. Chemosphere. 2022 Dec;308(Pt 1):136148. doi: 10.1016/j.chemosphere.2022.136148. Epub 2022 Aug 29. [PubMed:36049640 ]
- Zhang C, Xie X, Feng S, Lei W, Xia M, Wang F, Wang H: Sensitive fluorescent detection and micromechanism of Mn-doped CuS probe for oxytetracycline hydrochloride. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Jan 5;284:121768. doi: 10.1016/j.saa.2022.121768. Epub 2022 Aug 24. [PubMed:36049299 ]
- Wang P, Wang J, Zhu Y, Shi R, Wang D, Yang P: Interface Nanoarchitectonics of TiO(2)/g-C(3)N(4) 2D/2D Heterostructures for Enhanced Antibiotic Degradation and Cr(VI) Reduction. Langmuir. 2022 Sep 13;38(36):11068-11079. doi: 10.1021/acs.langmuir.2c01711. Epub 2022 Aug 31. [PubMed:36044677 ]
- Bahekar VS, Gonuguntla HN, Sarangi LN, Manasa G, Chandaka KD, Rana SK, Prasad A, Surendra KSNL, Ponnanna NM, Sharma GK: Detection and genetic characterization indicates circulation of a possible new Theileria species (Theileria sp. Yokoyama) in India. Vet Parasitol Reg Stud Reports. 2022 Sep;34:100765. doi: 10.1016/j.vprsr.2022.100765. Epub 2022 Jul 28. [PubMed:36041800 ]
- Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E: Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. Chemosphere. 2022 Nov;307(Pt 4):136215. doi: 10.1016/j.chemosphere.2022.136215. Epub 2022 Aug 27. [PubMed:36041517 ]
- LOTUS database [Link]
|
---|