| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-12 00:07:41 UTC |
|---|
| Updated at | 2022-09-12 00:07:41 UTC |
|---|
| NP-MRD ID | NP0321751 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (2r,4s)-2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane |
|---|
| Description | Epibatidine belongs to the class of organic compounds known as epibatidine analogues. Epibatidine analogues are compounds containing an epibatidine moiety, with a structure characterized by a 2-chloropyridine moiety connected to an 7-azabicyclo[2.2.1]Heptane in exo position. (2r,4s)-2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane is found in Epipedobates anthonyi. (2r,4s)-2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane was first documented in 2021 (PMID: 34407206). Based on a literature review a small amount of articles have been published on Epibatidine (PMID: 35049904) (PMID: 36062901) (PMID: 35234149) (PMID: 34358124). |
|---|
| Structure | ClC1=CC=C(C=N1)[C@H]1C[C@@H]2CCC1N2 InChI=1S/C11H13ClN2/c12-11-4-1-7(6-13-11)9-5-8-2-3-10(9)14-8/h1,4,6,8-10,14H,2-3,5H2/t8-,9+,10?/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C11H13ClN2 |
|---|
| Average Mass | 208.6900 Da |
|---|
| Monoisotopic Mass | 208.07673 Da |
|---|
| IUPAC Name | (2R,4S)-2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane |
|---|
| Traditional Name | (2R,4S)-2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | ClC1=CC=C(C=N1)[C@H]1C[C@@H]2CCC1N2 |
|---|
| InChI Identifier | InChI=1S/C11H13ClN2/c12-11-4-1-7(6-13-11)9-5-8-2-3-10(9)14-8/h1,4,6,8-10,14H,2-3,5H2/t8-,9+,10?/m0/s1 |
|---|
| InChI Key | NLPRAJRHRHZCQQ-QIIDTADFSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as epibatidine analogues. Epibatidine analogues are compounds containing an epibatidine moiety, with a structure characterized by a 2-chloropyridine moiety connected to an 7-azabicyclo[2.2.1]Heptane in exo position. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Alkaloids and derivatives |
|---|
| Class | Epibatidine analogues |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Epibatidine analogues |
|---|
| Alternative Parents | |
|---|
| Substituents | - Epibatidine-skeleton
- Pyrrolidinylpyridine
- 2-halopyridine
- Aralkylamine
- Pyridine
- Aryl halide
- Aryl chloride
- Heteroaromatic compound
- Pyrrolidine
- Azacycle
- Organoheterocyclic compound
- Secondary amine
- Secondary aliphatic amine
- Organic nitrogen compound
- Organopnictogen compound
- Hydrocarbon derivative
- Organonitrogen compound
- Organochloride
- Organohalogen compound
- Amine
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Kem WR, Andrud K, Bruno G, Xing H, Soti F, Talley TT, Taylor P: Interactions of Nereistoxin and Its Analogs with Vertebrate Nicotinic Acetylcholine Receptors and Molluscan ACh Binding Proteins. Mar Drugs. 2022 Jan 4;20(1). pii: md20010049. doi: 10.3390/md20010049. [PubMed:35049904 ]
- Frara N, Barbe MF, Giaddui D, Braverman AS, Amin M, Yu D, Ruggieri MR Sr: Dog and human bladders have different neurogenic and nicotinic responses in inner versus outer detrusor muscle layers. Am J Physiol Regul Integr Comp Physiol. 2022 Oct 1;323(4):R589-R600. doi: 10.1152/ajpregu.00084.2022. Epub 2022 Sep 5. [PubMed:36062901 ]
- Bueno RV, Davis S, Dawson A, Ondachi PW, Carroll FI, Hunter WN: Interactions between 2'-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors. Acta Crystallogr D Struct Biol. 2022 Mar 1;78(Pt 3):353-362. doi: 10.1107/S2059798322000754. Epub 2022 Feb 21. [PubMed:35234149 ]
- Mulcahy MJ, Huard SM, Paulo JA, Wang JH, McKinney S, Marks MJ, Henderson BJ, Lester HA: Protein profiling in the habenula after chronic (-)-menthol exposure in mice. J Neurochem. 2021 Sep;158(6):1345-1358. doi: 10.1111/jnc.15495. Epub 2021 Sep 2. [PubMed:34407206 ]
- Hansen TVA, Grencis RK, Issouf M, Neveu C, Charvet CL: Functional Characterization of the Oxantel-Sensitive Acetylcholine Receptor from Trichuris muris. Pharmaceuticals (Basel). 2021 Jul 20;14(7):698. doi: 10.3390/ph14070698. [PubMed:34358124 ]
- LOTUS database [Link]
|
|---|