Np mrd loader

Record Information
Version2.0
Created at2022-09-11 20:34:46 UTC
Updated at2022-09-11 20:34:46 UTC
NP-MRD IDNP0319515
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1r,2s,4r,5r,8r,9s)-2-({[(2r,3s,4s,5s,6r)-3,4-dihydroxy-5-methoxy-6-methyloxan-2-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1-carboxylic acid
DescriptionSordarin belongs to the class of organic compounds known as terpene glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. (1r,2s,4r,5r,8r,9s)-2-({[(2r,3s,4s,5s,6r)-3,4-dihydroxy-5-methoxy-6-methyloxan-2-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1-carboxylic acid is found in Hypoxylon croceum and Parascedosporium putredinis. (1r,2s,4r,5r,8r,9s)-2-({[(2r,3s,4s,5s,6r)-3,4-dihydroxy-5-methoxy-6-methyloxan-2-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0²,¹¹.0⁴,⁸]tridec-12-ene-1-carboxylic acid was first documented in 2016 (PMID: 27072286). Based on a literature review a significant number of articles have been published on Sordarin (PMID: 28383269) (PMID: 31478377) (PMID: 35546152) (PMID: 32358585) (PMID: 35701881) (PMID: 34767248).
Structure
Thumb
Synonyms
ValueSource
Sordarin bMeSH
Chemical FormulaC27H40O8
Average Mass492.6090 Da
Monoisotopic Mass492.27232 Da
IUPAC Name(1R,2S,4R,5R,8R,9S)-2-({[(2R,3S,4S,5S,6R)-3,4-dihydroxy-5-methoxy-6-methyloxan-2-yl]oxy}methyl)-9-formyl-5-methyl-13-(propan-2-yl)tetracyclo[7.4.0.0^{2,11}.0^{4,8}]tridec-12-ene-1-carboxylic acid
Traditional Name(1R,2S,4R,5R,8R,9S)-2-({[(2R,3S,4S,5S,6R)-3,4-dihydroxy-5-methoxy-6-methyloxan-2-yl]oxy}methyl)-9-formyl-13-isopropyl-5-methyltetracyclo[7.4.0.0^{2,11}.0^{4,8}]tridec-12-ene-1-carboxylic acid
CAS Registry NumberNot Available
SMILES
CO[C@@H]1[C@@H](C)O[C@@H](OC[C@@]23C[C@@H]4[C@H](C)CC[C@H]4[C@]4(CC2C=C(C(C)C)[C@@]34C(O)=O)C=O)[C@@H](O)[C@@H]1O
InChI Identifier
InChI=1S/C27H40O8/c1-13(2)19-8-16-9-25(11-28)18-7-6-14(3)17(18)10-26(16,27(19,25)24(31)32)12-34-23-21(30)20(29)22(33-5)15(4)35-23/h8,11,13-18,20-23,29-30H,6-7,9-10,12H2,1-5H3,(H,31,32)/t14-,15-,16?,17-,18-,20+,21+,22-,23-,25+,26+,27+/m1/s1
InChI KeyOGGVRVMISBQNMQ-UQYLMRGISA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Hypoxylon croceumLOTUS Database
Parascedosporium putredinisLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as terpene glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene glycosides
Direct ParentTerpene glycosides
Alternative Parents
Substituents
  • Terpene glycoside
  • Sesquiterpenoid
  • Hexose monosaccharide
  • Glycosyl compound
  • O-glycosyl compound
  • Monosaccharide
  • Oxane
  • 1,2-diol
  • Secondary alcohol
  • Acetal
  • Carboxylic acid derivative
  • Carboxylic acid
  • Dialkyl ether
  • Ether
  • Monocarboxylic acid or derivatives
  • Oxacycle
  • Organoheterocyclic compound
  • Aldehyde
  • Organic oxide
  • Hydrocarbon derivative
  • Carbonyl group
  • Organic oxygen compound
  • Alcohol
  • Organooxygen compound
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.11ChemAxon
pKa (Strongest Acidic)4.18ChemAxon
pKa (Strongest Basic)-3.7ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area122.52 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity126.52 m³·mol⁻¹ChemAxon
Polarizability53.05 ųChemAxon
Number of Rings5ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00015130
Chemspider ID426016
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound44582273
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Dewapriya P, Prasad P, Damodar R, Salim AA, Capon RJ: Talarolide A, a Cyclic Heptapeptide Hydroxamate from an Australian Marine Tunicate-Associated Fungus, Talaromyces sp. (CMB-TU011). Org Lett. 2017 Apr 21;19(8):2046-2049. doi: 10.1021/acs.orglett.7b00638. Epub 2017 Apr 6. [PubMed:28383269 ]
  2. Zhang MQ, Xu KX, Xue Y, Cao F, Yang LJ, Hou XM, Wang CY, Shao CL: Sordarin Diterpene Glycosides with an Unusual 1,3-Dioxolan-4-one Ring from the Zoanthid-Derived Fungus Curvularia hawaiiensis TA26-15. J Nat Prod. 2019 Sep 27;82(9):2477-2482. doi: 10.1021/acs.jnatprod.9b00164. Epub 2019 Sep 3. [PubMed:31478377 ]
  3. Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y: Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun. 2022 May 11;13(1):2568. doi: 10.1038/s41467-022-30288-6. [PubMed:35546152 ]
  4. Ueno M, Kobayashi M, Fujie A, Shibata T: Cloning and heterologous expression of P450Lent4B11, a novel bacterial P450 gene, for hydroxylation of an antifungal agent sordaricin. J Antibiot (Tokyo). 2020 Sep;73(9):615-621. doi: 10.1038/s41429-020-0310-9. Epub 2020 May 1. [PubMed:32358585 ]
  5. Kudo F, Matsuura Y, Hayashi T, Fukushima M, Eguchi T: Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J Antibiot (Tokyo). 2016 Jul;69(7):541-8. doi: 10.1038/ja.2016.40. Epub 2016 Apr 13. [PubMed:27072286 ]
  6. Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX, Ge HM: Biosynthesis of Sordarin Revealing a Diels-Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl. 2022 Aug 15;61(33):e202205577. doi: 10.1002/anie.202205577. Epub 2022 Jul 7. [PubMed:35701881 ]
  7. Shao Y, Molestak E, Su W, Stankevic M, Tchorzewski M: Sordarin- An anti-fungal antibiotic with a unique modus operandi. Br J Pharmacol. 2022 Mar;179(6):1125-1145. doi: 10.1111/bph.15724. Epub 2022 Jan 13. [PubMed:34767248 ]
  8. Harms K, Milic A, Stchigel AM, Stadler M, Surup F, Marin-Felix Y: Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov. J Fungi (Basel). 2021 Mar 3;7(3):181. doi: 10.3390/jof7030181. [PubMed:33802411 ]
  9. Park MY, Park SJ, Kim JJ, Lee DH, Kim BS: Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot. Plant Pathol J. 2020 Dec 1;36(6):570-578. doi: 10.5423/PPJ.OA.09.2020.0176. [PubMed:33312092 ]
  10. Dorfer M, Heine D, Konig S, Gore S, Werz O, Hertweck C, Gressler M, Hoffmeister D: Melleolides impact fungal translation via elongation factor 2. Org Biomol Chem. 2019 May 15;17(19):4906-4916. doi: 10.1039/c9ob00562e. [PubMed:31042251 ]
  11. Wu Y, Dockendorff C: Synthesis of Simplified Azasordarin Analogs as Potential Antifungal Agents. J Org Chem. 2019 May 3;84(9):5292-5304. doi: 10.1021/acs.joc.9b00296. Epub 2019 Apr 9. [PubMed:30919633 ]
  12. Liang XR, Ma XY, Ji NY: Trichosordarin A, a norditerpene glycoside from the marine-derived fungus Trichoderma harzianum R5. Nat Prod Res. 2020 Jul;34(14):2037-2042. doi: 10.1080/14786419.2019.1574782. Epub 2019 Feb 19. [PubMed:30777455 ]
  13. Villahermosa D, Knapp K, Fleck O: A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet. 2017 Dec;63(6):1081-1091. doi: 10.1007/s00294-017-0711-x. Epub 2017 May 29. [PubMed:28555368 ]
  14. Seyedmousavi S, Rafati H, Ilkit M, Tolooe A, Hedayati MT, Verweij P: Systemic Antifungal Agents: Current Status and Projected Future Developments. Methods Mol Biol. 2017;1508:107-139. doi: 10.1007/978-1-4939-6515-1_5. [PubMed:27837500 ]
  15. Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA: Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. Elife. 2016 May 9;5:e14874. doi: 10.7554/eLife.14874. [PubMed:27159452 ]
  16. LOTUS database [Link]