| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-11 19:00:21 UTC |
|---|
| Updated at | 2022-09-11 19:00:21 UTC |
|---|
| NP-MRD ID | NP0318479 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3r,6z,10s)-3-isopropyl-6,10-dimethylcyclodec-6-ene-1,4-dione |
|---|
| Description | Neocurdione belongs to the class of organic compounds known as germacrane sesquiterpenoids. These are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. (3r,6z,10s)-3-isopropyl-6,10-dimethylcyclodec-6-ene-1,4-dione is found in Curcuma aromatica and Curcuma zedoaria. (3r,6z,10s)-3-isopropyl-6,10-dimethylcyclodec-6-ene-1,4-dione was first documented in 2015 (PMID: 26281553). Based on a literature review a small amount of articles have been published on Neocurdione (PMID: 29914391) (PMID: 33866197) (PMID: 33787137). |
|---|
| Structure | CC(C)[C@H]1CC(=O)[C@@H](C)CC\C=C(C)/CC1=O InChI=1S/C15H24O2/c1-10(2)13-9-14(16)12(4)7-5-6-11(3)8-15(13)17/h6,10,12-13H,5,7-9H2,1-4H3/b11-6-/t12-,13+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C15H24O2 |
|---|
| Average Mass | 236.3550 Da |
|---|
| Monoisotopic Mass | 236.17763 Da |
|---|
| IUPAC Name | (3R,6Z,10S)-6,10-dimethyl-3-(propan-2-yl)cyclodec-6-ene-1,4-dione |
|---|
| Traditional Name | (3R,6Z,10S)-3-isopropyl-6,10-dimethylcyclodec-6-ene-1,4-dione |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)[C@H]1CC(=O)[C@@H](C)CC\C=C(C)/CC1=O |
|---|
| InChI Identifier | InChI=1S/C15H24O2/c1-10(2)13-9-14(16)12(4)7-5-6-11(3)8-15(13)17/h6,10,12-13H,5,7-9H2,1-4H3/b11-6-/t12-,13+/m0/s1 |
|---|
| InChI Key | KDPFMRXIVDLQKX-BLJGWETHSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as germacrane sesquiterpenoids. These are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | Germacrane sesquiterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Germacrane sesquiterpenoid
- Cyclic ketone
- Ketone
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aliphatic homomonocyclic compound
|
|---|
| Molecular Framework | Aliphatic homomonocyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - El-Hawaz RF, Grace MH, Janbey A, Lila MA, Adelberg JW: In vitro mineral nutrition of Curcuma longa L. affects production of volatile compounds in rhizomes after transfer to the greenhouse. BMC Plant Biol. 2018 Jun 18;18(1):122. doi: 10.1186/s12870-018-1345-y. [PubMed:29914391 ]
- Tong H, Yu M, Fei C, Ji, Dong J, Su L, Gu W, Mao C, Li L, Bian Z, Lu T, Hao M, Zeng B: Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine. 2021 Jun;86:153558. doi: 10.1016/j.phymed.2021.153558. Epub 2021 Mar 27. [PubMed:33866197 ]
- Yu MT, Tong HJ, Mao CQ, Su D, Yin FZ, Fei CH, Wang M, Ji D, Lu TL: [Study on quality identification of Curcumae Rhizoma from different origins based on quantitative analysis of appearance color and content of main components]. Zhongguo Zhong Yao Za Zhi. 2021 Mar;46(6):1393-1400. doi: 10.19540/j.cnki.cjcmm.20201111.301. [PubMed:33787137 ]
- Gan YX, Luo NN, Jiang YP, Liu Q, Fu S, Wang L, Liao W, Fu CM: [Simultaneous determination of beta-elemene, curcumol, germacrone and neocurdione in volatile oil of Curcuma phaeocaulis and vinegar products by GC-MS]. Zhongguo Zhong Yao Za Zhi. 2015 Apr;40(7):1311-5. [PubMed:26281553 ]
- LOTUS database [Link]
|
|---|