Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-11 18:11:46 UTC |
---|
Updated at | 2022-09-11 18:11:46 UTC |
---|
NP-MRD ID | NP0317980 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (3r,6r,9s,12s,15r,21s,24s,30r,33s,36s)-5,11,17,23,29,35-hexahydroxy-3,6,9,15,18,21,27,30,33-nonaisopropyl-12,24,36-trimethyl-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexaazacyclohexatriaconta-4,10,16,22,28,34-hexaene-2,8,14,20,26,32-hexone |
---|
Description | Valinomycin belongs to the class of organic compounds known as cyclic depsipeptides. These are natural or synthetic compounds having sequences of amino and hydroxy carboxylic acid residues (usually α-amino and α-hydroxy acids) connected in a ring. The residues are commonly but not necessarily regularly alternating. (3r,6r,9s,12s,15r,21s,24s,30r,33s,36s)-5,11,17,23,29,35-hexahydroxy-3,6,9,15,18,21,27,30,33-nonaisopropyl-12,24,36-trimethyl-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexaazacyclohexatriaconta-4,10,16,22,28,34-hexaene-2,8,14,20,26,32-hexone is found in Streptomyces griseus. (3r,6r,9s,12s,15r,21s,24s,30r,33s,36s)-5,11,17,23,29,35-hexahydroxy-3,6,9,15,18,21,27,30,33-nonaisopropyl-12,24,36-trimethyl-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexaazacyclohexatriaconta-4,10,16,22,28,34-hexaene-2,8,14,20,26,32-hexone was first documented in 2021 (PMID: 34946638). Based on a literature review a significant number of articles have been published on valinomycin (PMID: 36016355) (PMID: 35961396) (PMID: 35900329) (PMID: 35877870) (PMID: 35837472) (PMID: 35659575). |
---|
Structure | CC(C)C1OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)C(N=C(O)[C@H](OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)[C@H](N=C(O)[C@H](OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)[C@H](N=C1O)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C InChI=1S/C54H90N6O18/c1-22(2)34-49(67)73-31(19)43(61)55-38(26(9)10)53(71)77-41(29(15)16)47(65)59-36(24(5)6)51(69)75-33(21)45(63)57-39(27(11)12)54(72)78-42(30(17)18)48(66)60-35(23(3)4)50(68)74-32(20)44(62)56-37(25(7)8)52(70)76-40(28(13)14)46(64)58-34/h22-42H,1-21H3,(H,55,61)(H,56,62)(H,57,63)(H,58,64)(H,59,65)(H,60,66)/t31-,32-,33-,34+,35+,36?,37-,38-,39-,40+,41+,42?/m0/s1 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C54H90N6O18 |
---|
Average Mass | 1111.3380 Da |
---|
Monoisotopic Mass | 1110.63116 Da |
---|
IUPAC Name | (3S,6S,9R,12R,15S,18S,21R,27S,30S,36R)-5,11,17,23,29,35-hexahydroxy-6,18,30-trimethyl-3,9,12,15,21,24,27,33,36-nonakis(propan-2-yl)-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexaazacyclohexatriaconta-4,10,16,22,28,34-hexaene-2,8,14,20,26,32-hexone |
---|
Traditional Name | (3R,6R,9S,12S,15R,21S,24S,30R,33S,36S)-5,11,17,23,29,35-hexahydroxy-3,6,9,15,18,21,27,30,33-nonaisopropyl-12,24,36-trimethyl-1,7,13,19,25,31-hexaoxa-4,10,16,22,28,34-hexaazacyclohexatriaconta-4,10,16,22,28,34-hexaene-2,8,14,20,26,32-hexone |
---|
CAS Registry Number | Not Available |
---|
SMILES | CC(C)C1OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)C(N=C(O)[C@H](OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)[C@H](N=C(O)[C@H](OC(=O)[C@@H](N=C(O)[C@H](C)OC(=O)[C@H](N=C1O)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C |
---|
InChI Identifier | InChI=1S/C54H90N6O18/c1-22(2)34-49(67)73-31(19)43(61)55-38(26(9)10)53(71)77-41(29(15)16)47(65)59-36(24(5)6)51(69)75-33(21)45(63)57-39(27(11)12)54(72)78-42(30(17)18)48(66)60-35(23(3)4)50(68)74-32(20)44(62)56-37(25(7)8)52(70)76-40(28(13)14)46(64)58-34/h22-42H,1-21H3,(H,55,61)(H,56,62)(H,57,63)(H,58,64)(H,59,65)(H,60,66)/t31-,32-,33-,34+,35+,36?,37-,38-,39-,40+,41+,42?/m0/s1 |
---|
InChI Key | FCFNRCROJUBPLU-CVZFCLRKSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as cyclic depsipeptides. These are natural or synthetic compounds having sequences of amino and hydroxy carboxylic acid residues (usually α-amino and α-hydroxy acids) connected in a ring. The residues are commonly but not necessarily regularly alternating. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Peptidomimetics |
---|
Sub Class | Depsipeptides |
---|
Direct Parent | Cyclic depsipeptides |
---|
Alternative Parents | |
---|
Substituents | - Hexacarboxylic acid or derivatives
- Cyclic depsipeptide
- Macrolide
- Macrolactam
- Alpha-amino acid ester
- Alpha-amino acid or derivatives
- Cyclic carboximidic acid
- Lactone
- Carboxylic acid ester
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Organic 1,3-dipolar compound
- Propargyl-type 1,3-dipolar organic compound
- Polyol
- Carboxylic acid derivative
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Carbonyl group
- Aliphatic heteromonocyclic compound
|
---|
Molecular Framework | Aliphatic heteromonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Tanaka Y, Tanabe E, Nonaka Y, Uemura M, Tajima T, Ochiai K: Ionophore Antibiotics Inhibit Type II Feline Coronavirus Proliferation In Vitro. Viruses. 2022 Aug 6;14(8):1734. doi: 10.3390/v14081734. [PubMed:36016355 ]
- Lu S, Hu J, Xie X, Zhou R, Li F, Huang R, He J: Secondary Metabolites with Cytotoxic Activities from Streptomyces sp. BM-8 Isolated from the Feces of Equusquagga. Molecules. 2021 Dec 13;26(24):7556. doi: 10.3390/molecules26247556. [PubMed:34946638 ]
- Malas KM, Lambert DS, Heisner JS, Camara AKS, Stowe DF: Time and charge/pH-dependent activation of K(+) channel-mediated K(+) influx and K(+)/H(+) exchange in guinea pig heart isolated mitochondria; role in bioenergetic stability. Biochim Biophys Acta Bioenerg. 2022 Nov 1;1863(8):148908. doi: 10.1016/j.bbabio.2022.148908. Epub 2022 Aug 9. [PubMed:35961396 ]
- Hernandez-Garduno S, Chavez JC, Matamoros-Volante A, Sanchez-Guevara Y, Torres P, Trevino CL, Nishigaki T: Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction. 2022 Aug 24;164(4):125-134. doi: 10.1530/REP-22-0101. Print 2022 Oct 1. [PubMed:35900329 ]
- Belosludtseva NV, Pavlik LL, Belosludtsev KN, Saris NL, Shigaeva MI, Mironova GD: The Short-Term Opening of Cyclosporin A-Independent Palmitate/Sr(2+)-Induced Pore Can Underlie Ion Efflux in the Oscillatory Mode of Functioning of Rat Liver Mitochondria. Membranes (Basel). 2022 Jun 28;12(7):667. doi: 10.3390/membranes12070667. [PubMed:35877870 ]
- Plocinska R, Wasik K, Plocinski P, Lechowicz E, Antczak M, Blaszczyk E, Dziadek B, Slomka M, Rumijowska-Galewicz A, Dziadek J: The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein-Protein Interactions. Front Cell Infect Microbiol. 2022 Jun 28;12:909507. doi: 10.3389/fcimb.2022.909507. eCollection 2022. [PubMed:35837472 ]
- Luzak B, Siarkiewicz P, Boncler M: An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells. Toxicol In Vitro. 2022 Sep;83:105407. doi: 10.1016/j.tiv.2022.105407. Epub 2022 Jun 1. [PubMed:35659575 ]
- Ortiz-Sanchez PB, Roa-Espitia AL, Fierro R, Lopez-Torres AS, Jimenez-Morales I, Oseguera-Lopez I, Hernandez-Gonzalez EO, Gonzalez-Marquez H: Perfluorooctane sulfonate and perfluorooctanoic acid induce plasma membrane dysfunction in boar spermatozoa during in vitro capacitation. Reprod Toxicol. 2022 Jun;110:85-96. doi: 10.1016/j.reprotox.2022.03.013. Epub 2022 Mar 29. [PubMed:35364258 ]
- Zhang D, Bao Y, Ma Z, Zhou J, Chen H, Lu Y, Zhu L, Chen X: Optimization of fermentation medium and conditions for enhancing valinomycin production by Streptomyces sp. ZJUT-IFE-354. Prep Biochem Biotechnol. 2023;53(2):157-166. doi: 10.1080/10826068.2022.2053991. Epub 2022 Mar 24. [PubMed:35323097 ]
- Watson DJ, Meyers PR, Acquah KS, Dziwornu GA, Barnett CB, Wiesner L: Discovery of Novel Cyclic Ethers with Synergistic Antiplasmodial Activity in Combination with Valinomycin. Molecules. 2021 Dec 10;26(24):7494. doi: 10.3390/molecules26247494. [PubMed:34946577 ]
- Zhang D, Ma Z, Chen H, Ma W, Zhou J, Wang Q, Min C, Lu Y, Chen X: Efficient production of valinomycin by the soil bacterium, Streptomyces sp. ZJUT-IFE-354. 3 Biotech. 2022 Jan;12(1):2. doi: 10.1007/s13205-021-03055-5. Epub 2021 Dec 2. [PubMed:34926115 ]
- Boyd MA, Davis AM, Chambers NR, Tran P, Prindle A, Kamat NP: Vesicle-Based Sensors for Extracellular Potassium Detection. Cell Mol Bioeng. 2021 Aug 10;14(5):459-469. doi: 10.1007/s12195-021-00688-7. eCollection 2021 Oct. [PubMed:34777604 ]
- Son S, Yoon SH, Chae BJ, Hwang I, Shim DW, Choe YH, Hyun YM, Yu JW: Neutrophils Facilitate Prolonged Inflammasome Response in the DAMP-Rich Inflammatory Milieu. Front Immunol. 2021 Sep 29;12:746032. doi: 10.3389/fimmu.2021.746032. eCollection 2021. [PubMed:34659244 ]
- Mukherjee A, Ghule S, Vanka K: Computational Insights into the Role of External and Local Electric Fields in Macrocyclic Chemical and Biological Systems. Chemphyschem. 2021 Dec 3;22(23):2484-2492. doi: 10.1002/cphc.202100581. Epub 2021 Oct 18. [PubMed:34606681 ]
- LOTUS database [Link]
|
---|