| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-11 17:25:29 UTC |
|---|
| Updated at | 2022-09-11 17:25:29 UTC |
|---|
| NP-MRD ID | NP0317500 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (10s,11r,29r,31r,32r)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0²,⁷.0¹⁰,³².0¹¹,²⁹.0¹⁴,¹⁹.0²⁰,²⁵]nonatriaconta-1(39),2,4,6,14,16,18,20(25),21,23,35,37-dodecaene-8,13,26,34-tetrone |
|---|
| Description | (10S,11R,29R,31R,32R)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0²,⁷.0¹⁰,³².0¹¹,²⁹.0¹⁴,¹⁹.0²⁰,²⁵]Nonatriaconta-1(39),2,4,6,14,16,18,20,22,24,35,37-dodecaene-8,13,26,34-tetrone belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. (10s,11r,29r,31r,32r)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0²,⁷.0¹⁰,³².0¹¹,²⁹.0¹⁴,¹⁹.0²⁰,²⁵]nonatriaconta-1(39),2,4,6,14,16,18,20(25),21,23,35,37-dodecaene-8,13,26,34-tetrone is found in Quercus suber. Based on a literature review very few articles have been published on (10S,11R,29R,31R,32R)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0²,⁷.0¹⁰,³².0¹¹,²⁹.0¹⁴,¹⁹.0²⁰,²⁵]Nonatriaconta-1(39),2,4,6,14,16,18,20,22,24,35,37-dodecaene-8,13,26,34-tetrone. |
|---|
| Structure | O[C@@H]1O[C@@H]2COC(=O)C3=C(C(O)=C(O)C(O)=C3)C3=C(O)C(O)=C(O)C=C3C(=O)O[C@H]2[C@@H]2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=CC(=C(O)C(O)=C3O)C(=O)O[C@@H]12 InChI=1S/C34H24O22/c35-11-2-7-15(23(43)20(11)40)6-1-10(19(39)26(46)18(6)38)33(50)56-29-28(55-31(7)48)27-14(53-34(29)51)5-52-30(47)8-3-12(36)21(41)24(44)16(8)17-9(32(49)54-27)4-13(37)22(42)25(17)45/h1-4,14,27-29,34-46,51H,5H2/t14-,27-,28+,29-,34-/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C34H24O22 |
|---|
| Average Mass | 784.5440 Da |
|---|
| Monoisotopic Mass | 784.07592 Da |
|---|
| IUPAC Name | (10S,11R,29R,31R,32R)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0^{2,7}.0^{10,32}.0^{11,29}.0^{14,19}.0^{20,25}]nonatriaconta-1(39),2,4,6,14,16,18,20(25),21,23,35,37-dodecaene-8,13,26,34-tetrone |
|---|
| Traditional Name | (10S,11R,29R,31R,32R)-3,4,5,16,17,18,21,22,23,31,36,37,38-tridecahydroxy-9,12,27,30,33-pentaoxaheptacyclo[33.3.1.0^{2,7}.0^{10,32}.0^{11,29}.0^{14,19}.0^{20,25}]nonatriaconta-1(39),2,4,6,14,16,18,20(25),21,23,35,37-dodecaene-8,13,26,34-tetrone |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | O[C@@H]1O[C@@H]2COC(=O)C3=C(C(O)=C(O)C(O)=C3)C3=C(O)C(O)=C(O)C=C3C(=O)O[C@H]2[C@@H]2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=CC(=C(O)C(O)=C3O)C(=O)O[C@@H]12 |
|---|
| InChI Identifier | InChI=1S/C34H24O22/c35-11-2-7-15(23(43)20(11)40)6-1-10(19(39)26(46)18(6)38)33(50)56-29-28(55-31(7)48)27-14(53-34(29)51)5-52-30(47)8-3-12(36)21(41)24(44)16(8)17-9(32(49)54-27)4-13(37)22(42)25(17)45/h1-4,14,27-29,34-46,51H,5H2/t14-,27-,28+,29-,34-/m1/s1 |
|---|
| InChI Key | XUIOJKKOEAFHKT-MMQHQYPESA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Tannins |
|---|
| Sub Class | Hydrolyzable tannins |
|---|
| Direct Parent | Hydrolyzable tannins |
|---|
| Alternative Parents | |
|---|
| Substituents | - Hydrolyzable tannin
- Tetracarboxylic acid or derivatives
- Gallic acid or derivatives
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Benzenoid
- Monosaccharide
- Oxane
- Vinylogous acid
- Carboxylic acid ester
- Hemiacetal
- Lactone
- Carboxylic acid derivative
- Oxacycle
- Organoheterocyclic compound
- Polyol
- Hydrocarbon derivative
- Organic oxygen compound
- Organic oxide
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|