| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-11 02:26:43 UTC |
|---|
| Updated at | 2022-09-11 02:26:43 UTC |
|---|
| NP-MRD ID | NP0308576 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3s,25s)-8,17,18,30-tetramethoxy-4,24-dimethyl-10,12,15,32-tetraoxa-4,24-diazaoctacyclo[31.2.2.1³,⁷.1²⁷,³¹.0⁹,¹³.0¹⁶,²¹.0²⁰,²⁵.0¹⁴,³⁹]nonatriaconta-1(35),7(39),8,13,16(21),17,19,27,29,31(38),33,36-dodecaene |
|---|
| Description | Thalphinine belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. (3s,25s)-8,17,18,30-tetramethoxy-4,24-dimethyl-10,12,15,32-tetraoxa-4,24-diazaoctacyclo[31.2.2.1³,⁷.1²⁷,³¹.0⁹,¹³.0¹⁶,²¹.0²⁰,²⁵.0¹⁴,³⁹]nonatriaconta-1(35),7(39),8,13,16(21),17,19,27,29,31(38),33,36-dodecaene is found in Thalictrum foetidum. Based on a literature review very few articles have been published on Thalphinine. |
|---|
| Structure | COC1=CC=C2C[C@@H]3N(C)CCC4=C(OC5=C6OCOC6=C(OC)C6=C5[C@H](CC5=CC=C(OC1=C2)C=C5)N(C)CC6)C(OC)=C(OC)C=C34 InChI=1S/C39H42N2O8/c1-40-15-13-25-27-20-32(43-4)36(45-6)35(25)49-37-33-26(34(44-5)38-39(37)47-21-46-38)14-16-41(2)29(33)17-22-7-10-24(11-8-22)48-31-19-23(18-28(27)40)9-12-30(31)42-3/h7-12,19-20,28-29H,13-18,21H2,1-6H3/t28-,29-/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C39H42N2O8 |
|---|
| Average Mass | 666.7710 Da |
|---|
| Monoisotopic Mass | 666.29412 Da |
|---|
| IUPAC Name | (3S,25S)-8,17,18,30-tetramethoxy-4,24-dimethyl-10,12,15,32-tetraoxa-4,24-diazaoctacyclo[31.2.2.1^{3,7}.1^{27,31}.0^{9,13}.0^{16,21}.0^{20,25}.0^{14,39}]nonatriaconta-1(35),7(39),8,13,16(21),17,19,27,29,31(38),33,36-dodecaene |
|---|
| Traditional Name | (3S,25S)-8,17,18,30-tetramethoxy-4,24-dimethyl-10,12,15,32-tetraoxa-4,24-diazaoctacyclo[31.2.2.1^{3,7}.1^{27,31}.0^{9,13}.0^{16,21}.0^{20,25}.0^{14,39}]nonatriaconta-1(35),7(39),8,13,16(21),17,19,27,29,31(38),33,36-dodecaene |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC=C2C[C@@H]3N(C)CCC4=C(OC5=C6OCOC6=C(OC)C6=C5[C@H](CC5=CC=C(OC1=C2)C=C5)N(C)CC6)C(OC)=C(OC)C=C34 |
|---|
| InChI Identifier | InChI=1S/C39H42N2O8/c1-40-15-13-25-27-20-32(43-4)36(45-6)35(25)49-37-33-26(34(44-5)38-39(37)47-21-46-38)14-16-41(2)29(33)17-22-7-10-24(11-8-22)48-31-19-23(18-28(27)40)9-12-30(31)42-3/h7-12,19-20,28-29H,13-18,21H2,1-6H3/t28-,29-/m0/s1 |
|---|
| InChI Key | YPVVVGJEVFEYOG-VMPREFPWSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lignans, neolignans and related compounds |
|---|
| Class | Not Available |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Lignans, neolignans and related compounds |
|---|
| Alternative Parents | |
|---|
| Substituents | - Oxyneolignan skeleton
- Diaryl ether
- Tetrahydroisoquinoline
- Benzodioxole
- Anisole
- Alkyl aryl ether
- Aralkylamine
- Benzenoid
- Tertiary aliphatic amine
- Tertiary amine
- Organoheterocyclic compound
- Oxacycle
- Ether
- Acetal
- Azacycle
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organopnictogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Amine
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|