Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-10 20:48:48 UTC |
---|
Updated at | 2022-09-10 20:48:48 UTC |
---|
NP-MRD ID | NP0305197 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (3s,6r,7s,8s,11s,13s,14r,15r)-14-{[(2r,3s,4r,6s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione |
---|
Description | Oleandomycin belongs to the class of organic compounds known as aminoglycosides. These are molecules or a portion of a molecule composed of amino-modified sugars. (3s,6r,7s,8s,11s,13s,14r,15r)-14-{[(2r,3s,4r,6s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione is found in Streptomyces lividans. (3s,6r,7s,8s,11s,13s,14r,15r)-14-{[(2r,3s,4r,6s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione was first documented in 2015 (PMID: 26340418). Based on a literature review a significant number of articles have been published on oleandomycin (PMID: 34254896) (PMID: 33878330) (PMID: 33545126) (PMID: 33463404) (PMID: 33036250) (PMID: 32693204). |
---|
Structure | CO[C@@H]1C[C@@H](OC2[C@@H](C)[C@H](O[C@H]3O[C@@H](C)C[C@H]([C@@H]3O)N(C)C)[C@H](C)C[C@]3(CO3)C(=O)C(C)[C@H](O)[C@H](C)[C@H](C)OC(=O)[C@H]2C)O[C@H](C)[C@H]1O InChI=1S/C35H61NO12/c1-16-14-35(15-43-35)32(40)19(4)27(37)18(3)22(7)46-33(41)21(6)31(47-26-13-25(42-11)28(38)23(8)45-26)20(5)30(16)48-34-29(39)24(36(9)10)12-17(2)44-34/h16-31,34,37-39H,12-15H2,1-11H3/t16-,17+,18-,19?,20+,21+,22+,23-,24-,25-,26-,27-,28-,29+,30-,31?,34-,35+/m1/s1 |
---|
Synonyms | Value | Source |
---|
Phosphate, oleandomycin | MeSH | Oleandomycin phosphate | MeSH |
|
---|
Chemical Formula | C35H61NO12 |
---|
Average Mass | 687.8680 Da |
---|
Monoisotopic Mass | 687.41938 Da |
---|
IUPAC Name | (3S,6R,7S,8S,11S,13S,14R,15R)-14-{[(2R,3S,4R,6S)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2S,4R,5R,6R)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione |
---|
Traditional Name | (3S,6R,7S,8S,11S,13S,14R,15R)-14-{[(2R,3S,4R,6S)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2S,4R,5R,6R)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione |
---|
CAS Registry Number | Not Available |
---|
SMILES | CO[C@@H]1C[C@@H](OC2[C@@H](C)[C@H](O[C@H]3O[C@@H](C)C[C@H]([C@@H]3O)N(C)C)[C@H](C)C[C@]3(CO3)C(=O)C(C)[C@H](O)[C@H](C)[C@H](C)OC(=O)[C@H]2C)O[C@H](C)[C@H]1O |
---|
InChI Identifier | InChI=1S/C35H61NO12/c1-16-14-35(15-43-35)32(40)19(4)27(37)18(3)22(7)46-33(41)21(6)31(47-26-13-25(42-11)28(38)23(8)45-26)20(5)30(16)48-34-29(39)24(36(9)10)12-17(2)44-34/h16-31,34,37-39H,12-15H2,1-11H3/t16-,17+,18-,19?,20+,21+,22+,23-,24-,25-,26-,27-,28-,29+,30-,31?,34-,35+/m1/s1 |
---|
InChI Key | RZPAKFUAFGMUPI-GAPKVHOQSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as aminoglycosides. These are molecules or a portion of a molecule composed of amino-modified sugars. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Aminoglycosides |
---|
Alternative Parents | |
---|
Substituents | - Aminoglycoside core
- Macrolide
- O-glycosyl compound
- Glycosyl compound
- Oxane
- Monosaccharide
- Tertiary aliphatic amine
- Tertiary amine
- Secondary alcohol
- Lactone
- Ketone
- Carboxylic acid ester
- Amino acid or derivatives
- 1,2-aminoalcohol
- Oxacycle
- Organoheterocyclic compound
- Monocarboxylic acid or derivatives
- Ether
- Oxirane
- Dialkyl ether
- Carboxylic acid derivative
- Acetal
- Organic nitrogen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organonitrogen compound
- Carbonyl group
- Amine
- Alcohol
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Pereira BFM, Pereira MU, Ferreira RG, Spisso BF: Dietary exposure assessment to macrolide antimicrobial residues through infant formulas marketed in Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021 Jul 13:1-17. doi: 10.1080/19440049.2021.1933204. [PubMed:34254896 ]
- Nurhafizah Wan Ibrahim W, Kok Leong L, Abdul Razzak L, Musa N, Danish-Daniel M, Catherine Zainathan S, Musa N: Virulence properties and pathogenicity of multidrug-resistant Vibrio harveyi associated with luminescent vibriosis in pacific white shrimp, Penaeus vannamei. J Invertebr Pathol. 2021 Apr 17:107594. doi: 10.1016/j.jip.2021.107594. [PubMed:33878330 ]
- Zeng S, Sun J, Chen Z, Xu Q, Wei W, Wang D, Ni BJ: The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environ Res. 2021 Apr;195:110792. doi: 10.1016/j.envres.2021.110792. Epub 2021 Feb 2. [PubMed:33545126 ]
- Grutes JV, Ferreira RG, Pereira MU, Candido FS, Spisso BF: Development and validation of an LC-MS/MS screening method for macrolide and quinolone residues in baby food. J Environ Sci Health B. 2021;56(3):197-211. doi: 10.1080/03601234.2021.1872324. Epub 2021 Jan 19. [PubMed:33463404 ]
- Parisi G, Freda I, Exertier C, Cecchetti C, Gugole E, Cerutti G, D'Auria L, Macone A, Vallone B, Savino C, Montemiglio LC: Dissecting the Cytochrome P450 OleP Substrate Specificity: Evidence for a Preferential Substrate. Biomolecules. 2020 Oct 6;10(10). pii: biom10101411. doi: 10.3390/biom10101411. [PubMed:33036250 ]
- Raysyan A, Galvidis IA, Schneider RJ, Eremin SA, Burkin MA: Development of a latex particles-based lateral flow immunoassay for group determination of macrolide antibiotics in breast milk. J Pharm Biomed Anal. 2020 Sep 10;189:113450. doi: 10.1016/j.jpba.2020.113450. Epub 2020 Jul 13. [PubMed:32693204 ]
- Grobe S, Wszolek A, Brundiek H, Fekete M, Bornscheuer UT: Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett. 2020 May;42(5):819-824. doi: 10.1007/s10529-020-02813-4. Epub 2020 Jan 23. [PubMed:31974648 ]
- Risdian C, Mozef T, Wink J: Biosynthesis of Polyketides in Streptomyces. Microorganisms. 2019 May 6;7(5). pii: microorganisms7050124. doi: 10.3390/microorganisms7050124. [PubMed:31064143 ]
- Parisi G, Montemiglio LC, Giuffre A, Macone A, Scaglione A, Cerutti G, Exertier C, Savino C, Vallone B: Substrate-induced conformational change in cytochrome P450 OleP. FASEB J. 2019 Feb;33(2):1787-1800. doi: 10.1096/fj.201800450RR. Epub 2018 Sep 12. [PubMed:30207799 ]
- Tay JH, Arguelles AJ, DeMars MD 2nd, Zimmerman PM, Sherman DH, Nagorny P: Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J Am Chem Soc. 2017 Jun 28;139(25):8570-8578. doi: 10.1021/jacs.7b03198. Epub 2017 Jun 19. [PubMed:28627172 ]
- Laith AA, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, Wahab W, Ibrahim WN, Aznan AS, Jabar A, Najiah M: Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet World. 2017 Jan;10(1):101-111. doi: 10.14202/vetworld.2017.101-111. Epub 2017 Jan 24. [PubMed:28246454 ]
- Porter JD, Watson J, Roberts LR, Gill SK, Groves H, Dhariwal J, Almond MH, Wong E, Walton RP, Jones LH, Tregoning J, Kilty I, Johnston SL, Edwards MR: Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J Antimicrob Chemother. 2016 Oct;71(10):2767-81. doi: 10.1093/jac/dkw222. Epub 2016 Jul 25. [PubMed:27494903 ]
- Bryan MA, Hea SY, Mannering SA, Booker R: Demonstration of non-inferiority of a novel combination intramammary antimicrobial in the treatment of clinical mastitis. N Z Vet J. 2016 Nov;64(6):337-42. doi: 10.1080/00480169.2016.1210044. Epub 2016 Jul 27. [PubMed:27430313 ]
- Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC: Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb Technol. 2016 May;86:75-83. doi: 10.1016/j.enzmictec.2016.02.005. Epub 2016 Feb 12. [PubMed:26992796 ]
- Montemiglio LC, Parisi G, Scaglione A, Sciara G, Savino C, Vallone B: Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis. Biochim Biophys Acta. 2016 Mar;1860(3):465-75. doi: 10.1016/j.bbagen.2015.10.009. Epub 2015 Oct 22. [PubMed:26475642 ]
- Lawther K, Santos FG, Oyama LB, Rubino F, Morrison S, Creevey CJ, McGrath JW, Huws SA: Resistome Analysis of Global Livestock and Soil Microbiomes. Front Microbiol. 2022 Jul 7;13:897905. doi: 10.3389/fmicb.2022.897905. eCollection 2022. [PubMed:35875563 ]
- Zrieq R, Snoussi M, Algahtan FD, Tasleem M, Saeed M, Noumi E, Khalifa NE, Gad-Elkareem MAM, Aouadi K, Kadri A: Repurposing of anisomycin and oleandomycin as a potential anti-(SARS-CoV-2) virus targeting key enzymes using virtual computational approaches. Cell Mol Biol (Noisy-le-grand). 2022 Feb 4;67(5):387-398. doi: 10.14715/cmb/2021.67.5.51. [PubMed:35818229 ]
- de Carvalho LP, Groeger-Otero S, Kreidenweiss A, Kremsner PG, Mordmuller B, Held J: Boromycin has Rapid-Onset Antibiotic Activity Against Asexual and Sexual Blood Stages of Plasmodium falciparum. Front Cell Infect Microbiol. 2022 Jan 14;11:802294. doi: 10.3389/fcimb.2021.802294. eCollection 2021. [PubMed:35096650 ]
- Nguyen HP, Weisberg AJ, Chang JH, Clarke CR: Streptomyces caniscabiei sp. nov., which causes potato common scab and is distributed across the world. Int J Syst Evol Microbiol. 2022 Jan;72(1). doi: 10.1099/ijsem.0.005225. [PubMed:35085064 ]
- da Costa RP, Spisso BF, Pereira MU, Monteiro MA, Ferreira RG, da Nobrega AW: Innovative mixture of salts in the quick, easy, cheap, effective, rugged, and safe method for the extraction of residual macrolides in milk followed by analysis with liquid chromatography and tandem mass spectrometry. J Sep Sci. 2015 Nov;38(21):3743-9. doi: 10.1002/jssc.201500373. [PubMed:26340418 ]
- LOTUS database [Link]
|
---|