Np mrd loader

Record Information
Version2.0
Created at2022-09-10 18:40:40 UTC
Updated at2022-09-10 18:40:40 UTC
NP-MRD IDNP0303928
Secondary Accession NumbersNone
Natural Product Identification
Common Name(4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene
DescriptionOlean-12-ene belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. (4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene is found in Polypodium formosanum. (4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene was first documented in 2016 (PMID: 27350550). Based on a literature review a significant number of articles have been published on Olean-12-ene (PMID: 31241824) (PMID: 34380340) (PMID: 28194155) (PMID: 27498717) (PMID: 35687940) (PMID: 34688822).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC30H50
Average Mass410.7300 Da
Monoisotopic Mass410.39125 Da
IUPAC Name(4aR,6aS,6bR,8aS,12aS,12bR,14bR)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene
Traditional Name(4aR,6aS,6bR,8aS,12aS,12bR,14bR)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene
CAS Registry NumberNot Available
SMILES
CC1(C)CC[C@]2(C)CC[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CCCC(C)(C)[C@@H]5CC[C@@]34C)[C@@H]2C1
InChI Identifier
InChI=1S/C30H50/c1-25(2)16-17-27(5)18-19-29(7)21(22(27)20-25)10-11-24-28(6)14-9-13-26(3,4)23(28)12-15-30(24,29)8/h10,22-24H,9,11-20H2,1-8H3/t22-,23-,24+,27+,28-,29+,30+/m0/s1
InChI KeyZTLIRKGRXLVPOF-GAXUHWGVSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Polypodium formosanumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTriterpenoids
Direct ParentTriterpenoids
Alternative Parents
Substituents
  • Triterpenoid
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP8.63ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity130.39 m³·mol⁻¹ChemAxon
Polarizability52.91 ųChemAxon
Number of Rings5ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00019525
Chemspider ID9233848
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound11058690
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Elsbaey M, Sallam A, El-Metwally M, Nagata M, Tanaka C, Shimizu K, Miyamoto T: Melanogenesis Inhibitors from the Endophytic Fungus Aspergillus amstelodami. Chem Biodivers. 2019 Aug;16(8):e1900237. doi: 10.1002/cbdv.201900237. Epub 2019 Jul 16. [PubMed:31241824 ]
  2. Gamal G, Abo-El-Seoud KA, Attia G: Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat Prod Res. 2021 Aug 12:1-9. doi: 10.1080/14786419.2021.1961769. [PubMed:34380340 ]
  3. Khedr AI, Ibrahim SR, Mohamed GA, Ahmed HE, Ahmad AS, Ramadan MA, El-Baky AE, Yamada K, Ross SA: New ursane triterpenoids from Ficus pandurata and their binding affinity for human cannabinoid and opioid receptors. Arch Pharm Res. 2016 Jul;39(7):897-911. doi: 10.1007/s12272-016-0784-y. Epub 2016 Jun 27. [PubMed:27350550 ]
  4. Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T: Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato. Front Plant Sci. 2017 Jan 30;8:21. doi: 10.3389/fpls.2017.00021. eCollection 2017. [PubMed:28194155 ]
  5. Ponnapalli MG, Dangeti N, Sura MB, Kothapalli H, Akella VS, Shaik JB: Self gelating isoracemosol A, new racemosaceramide A, and racemosol E from Barringtonia racemosa. Nat Prod Res. 2017 Jan;31(1):63-69. doi: 10.1080/14786419.2016.1212033. Epub 2016 Aug 8. [PubMed:27498717 ]
  6. Lopez-Huerta FA, Ramirez-Apan MT, Mendez-Cuesta CA, Nieto-Camacho A, Hernandez-Ortega S, Almeida-Aguirre EKP, Cerbon MA, Delgado G: Synthesis, biological evaluation, molecular docking studies and In-silico ADMET evaluation of pyrazines of pentacyclic triterpenes. Bioorg Chem. 2022 Aug;125:105924. doi: 10.1016/j.bioorg.2022.105924. Epub 2022 Jun 2. [PubMed:35687940 ]
  7. Novillo F, Velasco-Barrios E, Nieto-Camacho A, Lopez-Huerta FA, Mendez Cuesta CA, Ramirez-Apan MT, Chavez MI, Martinez EM, Hernandez-Delgado T, Espinosa-Garcia FJ, Delgado G: 3beta-Palmitoyloxy-olean-12-ene analogs from Sapium lateriflorum (Euphorbiaceae): Their cytotoxic and anti-inflammatory properties and docking studies. Fitoterapia. 2021 Nov;155:105067. doi: 10.1016/j.fitote.2021.105067. Epub 2021 Oct 22. [PubMed:34688822 ]
  8. Zhou X, Shen P, Wang W, Zhou J, Raj R, Du Z, Xu S, Wang W, Yu B, Zhang J: Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements. J Agric Food Chem. 2021 Jun 23;69(24):6791-6798. doi: 10.1021/acs.jafc.1c01569. Epub 2021 Jun 8. [PubMed:34101468 ]
  9. Panja SK, Bag BG: Flower- and Grass-like Self-Assemblies of an Oleanane-Type Triterpenoid Erythrodiol: Application in the Removal of Toxic Dye from Water. ACS Omega. 2020 Nov 17;5(47):30488-30494. doi: 10.1021/acsomega.0c04291. eCollection 2020 Dec 1. [PubMed:33283097 ]
  10. Feng B, Zhao C, Li J, Yu J, Zhang Y, Zhang X, Tian T, Zhao L: The Novel Synthetic Triterpene Methyl 3beta-O-[4-(2-Aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate Inhibits Breast Tumor Cell Growth in Vitro and in Vivo. Chem Pharm Bull (Tokyo). 2020;68(10):962-970. doi: 10.1248/cpb.c20-00353. [PubMed:32999148 ]
  11. Shen P, Zhang J, Zhu Y, Wang W, Yu B, Wang W: Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Bioorg Med Chem. 2020 Jun 1;28(11):115465. doi: 10.1016/j.bmc.2020.115465. Epub 2020 Mar 29. [PubMed:32299661 ]
  12. Zhang D, Fu Y, Yang J, Li XN, San MM, Oo TN, Wang Y, Yang X: Triterpenoids and Their Glycosides from Glinus Oppositifolius with Antifungal Activities against Microsporum Gypseum and Trichophyton Rubrum. Molecules. 2019 Jun 12;24(12):2206. doi: 10.3390/molecules24122206. [PubMed:31212847 ]
  13. Rosa Martha PG, Susana Gabriela EA: Ursane derivatives isolated from leaves of Hylocereus undatus inhibit glycation at multiple stages. Chin J Nat Med. 2018 Nov;16(11):856-865. doi: 10.1016/S1875-5364(18)30127-4. [PubMed:30502767 ]
  14. Di TM, Yang SL, Du FY, Zhao L, Xia T, Zhang XF: Cytotoxic and Hypoglycemic Activity of Triterpenoid Saponins from Camellia oleifera Abel. Seed Pomace. Molecules. 2017 Sep 21;22(10):1562. doi: 10.3390/molecules22101562. [PubMed:28934101 ]
  15. Wu ZF, Meng FC, Cao LJ, Jiang CH, Zhao MG, Shang XL, Fang SZ, Ye WC, Zhang QW, Zhang J, Yin ZQ: Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. Phytochemistry. 2017 Oct;142:76-84. doi: 10.1016/j.phytochem.2017.06.015. Epub 2017 Jul 6. [PubMed:28688991 ]
  16. Wang L, Wesemann S, Krenn L, Ladurner A, Heiss EH, Dirsch VM, Atanasov AG: Erythrodiol, an Olive Oil Constituent, Increases the Half-Life of ABCA1 and Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Front Pharmacol. 2017 Jun 13;8:375. doi: 10.3389/fphar.2017.00375. eCollection 2017. [PubMed:28659806 ]
  17. Yan TL, Bai LF, Zhu HL, Zhang WM, Lv PC: Synthesis and Biological Evaluation of Glycyrrhetic Acid Derivatives as Potential VEGFR2 Inhibitors. ChemMedChem. 2017 Jul 6;12(13):1087-1096. doi: 10.1002/cmdc.201700271. Epub 2017 Jun 27. [PubMed:28599090 ]
  18. Reyes CP, Jimenez IA, Bazzocchi IL: Pentacyclic Triterpenoids from Maytenus cuzcoina. Nat Prod Commun. 2017 May;12(5):675-678. [PubMed:30496673 ]
  19. Moridi Farimani M, Abbas-Mohammadi M: Two new polyhydroxylated triterpenoids from Salvia urmiensis and their cytotoxic activity. Nat Prod Res. 2016 Dec;30(23):2648-2654. doi: 10.1080/14786419.2016.1138299. Epub 2016 Feb 1. [PubMed:30919695 ]
  20. LOTUS database [Link]