| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-10 18:40:40 UTC |
|---|
| Updated at | 2022-09-10 18:40:40 UTC |
|---|
| NP-MRD ID | NP0303928 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene |
|---|
| Description | Olean-12-ene belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. (4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene is found in Polypodium formosanum. (4ar,6as,6br,8as,12as,12br,14br)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene was first documented in 2016 (PMID: 27350550). Based on a literature review a significant number of articles have been published on Olean-12-ene (PMID: 31241824) (PMID: 34380340) (PMID: 28194155) (PMID: 27498717) (PMID: 35687940) (PMID: 34688822). |
|---|
| Structure | CC1(C)CC[C@]2(C)CC[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CCCC(C)(C)[C@@H]5CC[C@@]34C)[C@@H]2C1 InChI=1S/C30H50/c1-25(2)16-17-27(5)18-19-29(7)21(22(27)20-25)10-11-24-28(6)14-9-13-26(3,4)23(28)12-15-30(24,29)8/h10,22-24H,9,11-20H2,1-8H3/t22-,23-,24+,27+,28-,29+,30+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C30H50 |
|---|
| Average Mass | 410.7300 Da |
|---|
| Monoisotopic Mass | 410.39125 Da |
|---|
| IUPAC Name | (4aR,6aS,6bR,8aS,12aS,12bR,14bR)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene |
|---|
| Traditional Name | (4aR,6aS,6bR,8aS,12aS,12bR,14bR)-2,2,4a,6a,6b,9,9,12a-octamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1(C)CC[C@]2(C)CC[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CCCC(C)(C)[C@@H]5CC[C@@]34C)[C@@H]2C1 |
|---|
| InChI Identifier | InChI=1S/C30H50/c1-25(2)16-17-27(5)18-19-29(7)21(22(27)20-25)10-11-24-28(6)14-9-13-26(3,4)23(28)12-15-30(24,29)8/h10,22-24H,9,11-20H2,1-8H3/t22-,23-,24+,27+,28-,29+,30+/m0/s1 |
|---|
| InChI Key | ZTLIRKGRXLVPOF-GAXUHWGVSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Triterpenoids |
|---|
| Direct Parent | Triterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triterpenoid
- Polycyclic hydrocarbon
- Cyclic olefin
- Unsaturated aliphatic hydrocarbon
- Unsaturated hydrocarbon
- Olefin
- Hydrocarbon
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Elsbaey M, Sallam A, El-Metwally M, Nagata M, Tanaka C, Shimizu K, Miyamoto T: Melanogenesis Inhibitors from the Endophytic Fungus Aspergillus amstelodami. Chem Biodivers. 2019 Aug;16(8):e1900237. doi: 10.1002/cbdv.201900237. Epub 2019 Jul 16. [PubMed:31241824 ]
- Gamal G, Abo-El-Seoud KA, Attia G: Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat Prod Res. 2021 Aug 12:1-9. doi: 10.1080/14786419.2021.1961769. [PubMed:34380340 ]
- Khedr AI, Ibrahim SR, Mohamed GA, Ahmed HE, Ahmad AS, Ramadan MA, El-Baky AE, Yamada K, Ross SA: New ursane triterpenoids from Ficus pandurata and their binding affinity for human cannabinoid and opioid receptors. Arch Pharm Res. 2016 Jul;39(7):897-911. doi: 10.1007/s12272-016-0784-y. Epub 2016 Jun 27. [PubMed:27350550 ]
- Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T: Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato. Front Plant Sci. 2017 Jan 30;8:21. doi: 10.3389/fpls.2017.00021. eCollection 2017. [PubMed:28194155 ]
- Ponnapalli MG, Dangeti N, Sura MB, Kothapalli H, Akella VS, Shaik JB: Self gelating isoracemosol A, new racemosaceramide A, and racemosol E from Barringtonia racemosa. Nat Prod Res. 2017 Jan;31(1):63-69. doi: 10.1080/14786419.2016.1212033. Epub 2016 Aug 8. [PubMed:27498717 ]
- Lopez-Huerta FA, Ramirez-Apan MT, Mendez-Cuesta CA, Nieto-Camacho A, Hernandez-Ortega S, Almeida-Aguirre EKP, Cerbon MA, Delgado G: Synthesis, biological evaluation, molecular docking studies and In-silico ADMET evaluation of pyrazines of pentacyclic triterpenes. Bioorg Chem. 2022 Aug;125:105924. doi: 10.1016/j.bioorg.2022.105924. Epub 2022 Jun 2. [PubMed:35687940 ]
- Novillo F, Velasco-Barrios E, Nieto-Camacho A, Lopez-Huerta FA, Mendez Cuesta CA, Ramirez-Apan MT, Chavez MI, Martinez EM, Hernandez-Delgado T, Espinosa-Garcia FJ, Delgado G: 3beta-Palmitoyloxy-olean-12-ene analogs from Sapium lateriflorum (Euphorbiaceae): Their cytotoxic and anti-inflammatory properties and docking studies. Fitoterapia. 2021 Nov;155:105067. doi: 10.1016/j.fitote.2021.105067. Epub 2021 Oct 22. [PubMed:34688822 ]
- Zhou X, Shen P, Wang W, Zhou J, Raj R, Du Z, Xu S, Wang W, Yu B, Zhang J: Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements. J Agric Food Chem. 2021 Jun 23;69(24):6791-6798. doi: 10.1021/acs.jafc.1c01569. Epub 2021 Jun 8. [PubMed:34101468 ]
- Panja SK, Bag BG: Flower- and Grass-like Self-Assemblies of an Oleanane-Type Triterpenoid Erythrodiol: Application in the Removal of Toxic Dye from Water. ACS Omega. 2020 Nov 17;5(47):30488-30494. doi: 10.1021/acsomega.0c04291. eCollection 2020 Dec 1. [PubMed:33283097 ]
- Feng B, Zhao C, Li J, Yu J, Zhang Y, Zhang X, Tian T, Zhao L: The Novel Synthetic Triterpene Methyl 3beta-O-[4-(2-Aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate Inhibits Breast Tumor Cell Growth in Vitro and in Vivo. Chem Pharm Bull (Tokyo). 2020;68(10):962-970. doi: 10.1248/cpb.c20-00353. [PubMed:32999148 ]
- Shen P, Zhang J, Zhu Y, Wang W, Yu B, Wang W: Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Bioorg Med Chem. 2020 Jun 1;28(11):115465. doi: 10.1016/j.bmc.2020.115465. Epub 2020 Mar 29. [PubMed:32299661 ]
- Zhang D, Fu Y, Yang J, Li XN, San MM, Oo TN, Wang Y, Yang X: Triterpenoids and Their Glycosides from Glinus Oppositifolius with Antifungal Activities against Microsporum Gypseum and Trichophyton Rubrum. Molecules. 2019 Jun 12;24(12):2206. doi: 10.3390/molecules24122206. [PubMed:31212847 ]
- Rosa Martha PG, Susana Gabriela EA: Ursane derivatives isolated from leaves of Hylocereus undatus inhibit glycation at multiple stages. Chin J Nat Med. 2018 Nov;16(11):856-865. doi: 10.1016/S1875-5364(18)30127-4. [PubMed:30502767 ]
- Di TM, Yang SL, Du FY, Zhao L, Xia T, Zhang XF: Cytotoxic and Hypoglycemic Activity of Triterpenoid Saponins from Camellia oleifera Abel. Seed Pomace. Molecules. 2017 Sep 21;22(10):1562. doi: 10.3390/molecules22101562. [PubMed:28934101 ]
- Wu ZF, Meng FC, Cao LJ, Jiang CH, Zhao MG, Shang XL, Fang SZ, Ye WC, Zhang QW, Zhang J, Yin ZQ: Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. Phytochemistry. 2017 Oct;142:76-84. doi: 10.1016/j.phytochem.2017.06.015. Epub 2017 Jul 6. [PubMed:28688991 ]
- Wang L, Wesemann S, Krenn L, Ladurner A, Heiss EH, Dirsch VM, Atanasov AG: Erythrodiol, an Olive Oil Constituent, Increases the Half-Life of ABCA1 and Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Front Pharmacol. 2017 Jun 13;8:375. doi: 10.3389/fphar.2017.00375. eCollection 2017. [PubMed:28659806 ]
- Yan TL, Bai LF, Zhu HL, Zhang WM, Lv PC: Synthesis and Biological Evaluation of Glycyrrhetic Acid Derivatives as Potential VEGFR2 Inhibitors. ChemMedChem. 2017 Jul 6;12(13):1087-1096. doi: 10.1002/cmdc.201700271. Epub 2017 Jun 27. [PubMed:28599090 ]
- Reyes CP, Jimenez IA, Bazzocchi IL: Pentacyclic Triterpenoids from Maytenus cuzcoina. Nat Prod Commun. 2017 May;12(5):675-678. [PubMed:30496673 ]
- Moridi Farimani M, Abbas-Mohammadi M: Two new polyhydroxylated triterpenoids from Salvia urmiensis and their cytotoxic activity. Nat Prod Res. 2016 Dec;30(23):2648-2654. doi: 10.1080/14786419.2016.1138299. Epub 2016 Feb 1. [PubMed:30919695 ]
- LOTUS database [Link]
|
|---|