Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-10 17:45:02 UTC |
---|
Updated at | 2022-09-10 17:45:02 UTC |
---|
NP-MRD ID | NP0303418 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (2r,3r,4r,5r,6r)-4-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate |
---|
Description | Lavandulifolioside belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. (2r,3r,4r,5r,6r)-4-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate is found in Marrubium velutinum. (2r,3r,4r,5r,6r)-4-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate was first documented in 2020 (PMID: 32477129). Based on a literature review a small amount of articles have been published on lavandulifolioside (PMID: 36015136) (PMID: 34989967) (PMID: 33494336) (PMID: 33029485). |
---|
Structure | C[C@@H]1O[C@@H](O[C@@H]2[C@@H](O)[C@H](OCCC3=CC=C(O)C(O)=C3)O[C@H](CO)[C@H]2OC(=O)\C=C\C2=CC=C(O)C(O)=C2)[C@H](O[C@@H]2OC[C@@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@H]1O InChI=1S/C34H44O19/c1-14-24(42)26(44)31(53-32-27(45)25(43)21(40)13-48-32)34(49-14)52-30-28(46)33(47-9-8-16-3-6-18(37)20(39)11-16)50-22(12-35)29(30)51-23(41)7-4-15-2-5-17(36)19(38)10-15/h2-7,10-11,14,21-22,24-40,42-46H,8-9,12-13H2,1H3/b7-4+/t14-,21+,22+,24-,25+,26+,27-,28+,29+,30+,31+,32-,33+,34-/m0/s1 |
---|
Synonyms | Value | Source |
---|
3,4-Dihydroxy,beta-phenylethoxy-O-beta-D-arabinopyranosyl-(1-2)-alpha- L-rhamnopyranosyl-(1-3)-4-O-beta-caffeoyl-beta-D-glucopyranoside | MeSH |
|
---|
Chemical Formula | C34H44O19 |
---|
Average Mass | 756.7070 Da |
---|
Monoisotopic Mass | 756.24768 Da |
---|
IUPAC Name | (2R,3R,4R,5R,6R)-4-{[(2S,3R,4R,5R,6S)-4,5-dihydroxy-6-methyl-3-{[(2S,3S,4R,5R)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate |
---|
Traditional Name | (2R,3R,4R,5R,6R)-4-{[(2S,3R,4R,5R,6S)-4,5-dihydroxy-6-methyl-3-{[(2S,3S,4R,5R)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate |
---|
CAS Registry Number | Not Available |
---|
SMILES | C[C@@H]1O[C@@H](O[C@@H]2[C@@H](O)[C@H](OCCC3=CC=C(O)C(O)=C3)O[C@H](CO)[C@H]2OC(=O)\C=C\C2=CC=C(O)C(O)=C2)[C@H](O[C@@H]2OC[C@@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@H]1O |
---|
InChI Identifier | InChI=1S/C34H44O19/c1-14-24(42)26(44)31(53-32-27(45)25(43)21(40)13-48-32)34(49-14)52-30-28(46)33(47-9-8-16-3-6-18(37)20(39)11-16)50-22(12-35)29(30)51-23(41)7-4-15-2-5-17(36)19(38)10-15/h2-7,10-11,14,21-22,24-40,42-46H,8-9,12-13H2,1H3/b7-4+/t14-,21+,22+,24-,25+,26+,27-,28+,29+,30+,31+,32-,33+,34-/m0/s1 |
---|
InChI Key | UDHCHDJLZGYDDM-SLZARYJYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Oligosaccharides |
---|
Alternative Parents | |
---|
Substituents | - Oligosaccharide
- Cinnamic acid or derivatives
- Coumaric acid or derivatives
- Hydroxycinnamic acid or derivatives
- Cinnamic acid ester
- Glycosyl compound
- O-glycosyl compound
- Tyrosol derivative
- Catechol
- Styrene
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Fatty acid ester
- Phenol
- Monocyclic benzene moiety
- Oxane
- Benzenoid
- Fatty acyl
- Enoate ester
- Alpha,beta-unsaturated carboxylic ester
- Secondary alcohol
- Carboxylic acid ester
- Polyol
- Organoheterocyclic compound
- Monocarboxylic acid or derivatives
- Carboxylic acid derivative
- Oxacycle
- Acetal
- Carbonyl group
- Primary alcohol
- Alcohol
- Organic oxide
- Hydrocarbon derivative
- Aromatic heteromonocyclic compound
|
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Lytra K, Tomou EM, Chrysargyris A, Drouza C, Skaltsa H, Tzortzakis N: Traditionally Used Sideritis cypria Post.: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front Pharmacol. 2020 May 12;11:650. doi: 10.3389/fphar.2020.00650. eCollection 2020. [PubMed:32477129 ]
- Di Giacomo S, Di Sotto A, Angelis A, Percaccio E, Vitalone A, Gulli M, Macone A, Axiotis E, Skaltsounis AL: Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals (Basel). 2022 Aug 11;15(8):987. doi: 10.3390/ph15080987. [PubMed:36015136 ]
- Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Biswas R, Dutta B, Mukherjee D, Pati S, Pattanaik S, Ray RR: Analysis of Antibiofilm Activities of Bioactive Compounds from Honeyweed (Leonurus sibiricus) Against P. aeruginosa: an In Vitro and In Silico Approach. Appl Biochem Biotechnol. 2022 Jan 6. doi: 10.1007/s12010-021-03797-1. [PubMed:34989967 ]
- Angeloni S, Spinozzi E, Maggi F, Sagratini G, Caprioli G, Borsetta G, Ak G, Sinan KI, Zengin G, Arpini S, Mombelli G, Ricciutelli M: Phytochemical Profile and Biological Activities of Crude and Purified Leonurus cardiaca Extracts. Plants (Basel). 2021 Jan 21;10(2):195. doi: 10.3390/plants10020195. [PubMed:33494336 ]
- Simamora A, Santoso AW, Timotius KH, Rahayu I: Antioxidant Activity, Enzyme Inhibition Potentials, and Phytochemical Profiling of Premna serratifolia L. Leaf Extracts. Int J Food Sci. 2020 Sep 24;2020:3436940. doi: 10.1155/2020/3436940. eCollection 2020. [PubMed:33029485 ]
- LOTUS database [Link]
|
---|