Np mrd loader

Record Information
Version2.0
Created at2022-09-10 17:22:38 UTC
Updated at2022-09-10 17:22:38 UTC
NP-MRD IDNP0303207
Secondary Accession NumbersNone
Natural Product Identification
Common Name(3s,6z)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methylidene}-3h-pyrazine-2,5-diol
DescriptionNeoechinulin A belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. (3s,6z)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methylidene}-3h-pyrazine-2,5-diol is found in Aspergillus stellatus, Penicillium griseofulvum and Polysiphonia stricta. (3s,6z)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methylidene}-3h-pyrazine-2,5-diol was first documented in 2019 (PMID: 31494811). Based on a literature review a significant number of articles have been published on neoechinulin A (PMID: 32212241) (PMID: 34180325) (PMID: 35323462) (PMID: 33983974) (PMID: 33381959) (PMID: 34741824).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC19H21N3O2
Average Mass323.3960 Da
Monoisotopic Mass323.16338 Da
IUPAC Name(3S,6Z)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl]methylidene}-3,6-dihydropyrazine-2,5-diol
Traditional Name(3S,6Z)-3-methyl-6-{[2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl]methylidene}-3H-pyrazine-2,5-diol
CAS Registry NumberNot Available
SMILES
C[C@@H]1N=C(O)\C(=C\C2=C(NC3=CC=CC=C23)C(C)(C)C=C)N=C1O
InChI Identifier
InChI=1S/C19H21N3O2/c1-5-19(3,4)16-13(12-8-6-7-9-14(12)21-16)10-15-18(24)20-11(2)17(23)22-15/h5-11,21H,1H2,2-4H3,(H,20,24)(H,22,23)/b15-10-/t11-/m0/s1
InChI KeyMYRPIYZIAHOECW-SAIXKJTDSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Aspergillus stellatusLOTUS Database
Penicillium griseofulvumLOTUS Database
Polysiphonia strictaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAlpha amino acids and derivatives
Alternative Parents
Substituents
  • Alpha-amino acid or derivatives
  • Indole
  • Indole or derivatives
  • Dioxopiperazine
  • 2,5-dioxopiperazine
  • 1,4-diazinane
  • Piperazine
  • Substituted pyrrole
  • Benzenoid
  • Heteroaromatic compound
  • Pyrrole
  • Secondary carboxylic acid amide
  • Lactam
  • Carboxamide group
  • Azacycle
  • Organoheterocyclic compound
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.15ChemAxon
pKa (Strongest Acidic)4.46ChemAxon
pKa (Strongest Basic)3.49ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area80.97 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity96.1 m³·mol⁻¹ChemAxon
Polarizability35.56 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00011284
Chemspider ID8171886
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound9996305
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Wei X, Feng C, Wang SY, Zhang DM, Li XH, Zhang CX: New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3. Chem Biodivers. 2020 May;17(5):e2000106. doi: 10.1002/cbdv.202000106. Epub 2020 May 5. [PubMed:32212241 ]
  2. Sun JM, He JX, Huang M, Hu HX, Xu LT, Fang KL, Wang XN, Shen T: Two new physalins from Physalis alkekengi L. var. franchetii (Mast.) Makino. Nat Prod Res. 2021 Jun 28:1-7. doi: 10.1080/14786419.2021.1924713. [PubMed:34180325 ]
  3. Alhadrami HA, Burgio G, Thissera B, Orfali R, Jiffri SE, Yaseen M, Sayed AM, Rateb ME: Neoechinulin A as a Promising SARS-CoV-2 M(pro) Inhibitor: In Vitro and In Silico Study Showing the Ability of Simulations in Discerning Active from Inactive Enzyme Inhibitors. Mar Drugs. 2022 Feb 24;20(3). pii: md20030163. doi: 10.3390/md20030163. [PubMed:35323462 ]
  4. Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ: Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One. 2021 May 13;16(5):e0250954. doi: 10.1371/journal.pone.0250954. eCollection 2021. [PubMed:33983974 ]
  5. Nies J, Li SM: Prenylation and Dehydrogenation of a C2-Reversely Prenylated Diketopiperazine as a Branching Point in the Biosynthesis of Echinulin Family Alkaloids in Aspergillus ruber. ACS Chem Biol. 2021 Jan 15;16(1):185-192. doi: 10.1021/acschembio.0c00874. Epub 2020 Dec 31. [PubMed:33381959 ]
  6. Bovio E, Fauchon M, Toueix Y, Mehiri M, Varese GC, Hellio C: The Sponge-Associated Fungus Eurotium chevalieri MUT 2316 and its Bioactive Molecules: Potential Applications in the Field of Antifouling. Mar Biotechnol (NY). 2019 Dec;21(6):743-752. doi: 10.1007/s10126-019-09920-y. Epub 2019 Sep 7. [PubMed:31494811 ]
  7. Mitra S, Anand U, Sanyal R, Jha NK, Behl T, Mundhra A, Ghosh A, Radha, Kumar M, Prockow J, Dey A: Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed Pharmacother. 2022 Jan;145:112378. doi: 10.1016/j.biopha.2021.112378. Epub 2021 Nov 3. [PubMed:34741824 ]
  8. Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D: Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities. Front Nutr. 2021 Jul 16;8:664197. doi: 10.3389/fnut.2021.664197. eCollection 2021. [PubMed:34336908 ]
  9. Mohammed A, Bekeko Z, Yusufe M, Sulyok M, Krska R: Fungal Species and Multi-Mycotoxin Associated with Post-Harvest Sorghum (Sorghum bicolor (L.) Moench) Grain in Eastern Ethiopia. Toxins (Basel). 2022 Jul 11;14(7):473. doi: 10.3390/toxins14070473. [PubMed:35878211 ]
  10. Ma A, Jiang K, Chen B, Chen S, Qi X, Lu H, Liu J, Zhou X, Gao T, Li J, Zhao C: Evaluation of the anticarcinogenic potential of the endophyte, Streptomyces sp. LRE541 isolated from Lilium davidii var. unicolor (Hoog) Cotton. Microb Cell Fact. 2021 Dec 4;20(1):217. doi: 10.1186/s12934-021-01706-z. [PubMed:34863154 ]
  11. LOTUS database [Link]