Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-10 14:42:49 UTC |
---|
Updated at | 2022-09-10 14:42:49 UTC |
---|
NP-MRD ID | NP0301629 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | afzelechin |
---|
Description | afzelechin is found in Senegalia polyacantha, Actinidia chinensis, Artocarpus fretessii, Bergenia pacumbis, Cassia abbreviata, Cassipourea gummiflua, Hovenia dulcis, Kandelia candel, Pinalia floribunda, Prunus persica, Rhizophora stylosa, Typha capensis, Typha latifolia and Wisteria floribunda. afzelechin was first documented in 2008 (PMID: 18622126). |
---|
Structure | [H][C@]1(O)CC2=C(O)C=C(O)C=C2O[C@]1([H])C1=CC=C(O)C=C1 InChI=1S/C15H14O5/c16-9-3-1-8(2-4-9)15-13(19)7-11-12(18)5-10(17)6-14(11)20-15/h1-6,13,15-19H,7H2/t13-,15+/m0/s1 |
---|
Synonyms | Value | Source |
---|
(+)-Afzelechin | ChEBI | 3,5,7,4'-Tetrahydroxyflavan | ChEBI | (2R,3R)-2-(4-Hydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol | MeSH |
|
---|
Chemical Formula | C15H14O5 |
---|
Average Mass | 274.2720 Da |
---|
Monoisotopic Mass | 274.08412 Da |
---|
IUPAC Name | (2R,3S)-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol |
---|
Traditional Name | afzelechin |
---|
CAS Registry Number | Not Available |
---|
SMILES | [H][C@]1(O)CC2=C(O)C=C(O)C=C2O[C@]1([H])C1=CC=C(O)C=C1 |
---|
InChI Identifier | InChI=1S/C15H14O5/c16-9-3-1-8(2-4-9)15-13(19)7-11-12(18)5-10(17)6-14(11)20-15/h1-6,13,15-19H,7H2/t13-,15+/m0/s1 |
---|
InChI Key | RSYUFYQTACJFML-DZGCQCFKSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as flavan-3-ols. These are flavans that bear and hydroxyl group at position 3 (B ring), but not at position 4. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Flavonoids |
---|
Sub Class | Flavans |
---|
Direct Parent | Flavan-3-ols |
---|
Alternative Parents | |
---|
Substituents | - 3-hydroxyflavonoid
- 4'-hydroxyflavonoid
- 5-hydroxyflavonoid
- 7-hydroxyflavonoid
- Flavan-3-ol
- Hydroxyflavonoid
- 1-benzopyran
- Chromane
- Benzopyran
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Alkyl aryl ether
- Phenol
- Benzenoid
- Monocyclic benzene moiety
- Secondary alcohol
- Polyol
- Organoheterocyclic compound
- Oxacycle
- Ether
- Hydrocarbon derivative
- Organic oxygen compound
- Alcohol
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Saijyo J, Suzuki Y, Okuno Y, Yamaki H, Suzuki T, Miyazawa M: Alpha-glucosidase inhibitor from Bergenia ligulata. J Oleo Sci. 2008;57(8):431-5. doi: 10.5650/jos.57.431. [PubMed:18622126 ]
- Feng HL, Tian L, Chai WM, Chen XX, Shi Y, Gao YS, Yan CL, Chen QX: Isolation and purification of condensed tannins from flamboyant tree and their antioxidant and antityrosinase activities. Appl Biochem Biotechnol. 2014 May;173(1):179-92. doi: 10.1007/s12010-014-0828-z. Epub 2014 Mar 27. [PubMed:24671565 ]
- Zhu Y, Wang H, Peng Q, Tang Y, Xia G, Wu J, Xie DY: Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta. 2015 May;241(5):1075-89. doi: 10.1007/s00425-014-2238-4. Epub 2015 Jan 10. [PubMed:25575669 ]
- Shirai K, Okamoto Y, Tori M, Kawahara T, Gong X, Noyama T, Watanabe E, Kuroda C: Diversity in the flavonoid composition of Stellera chamaejasme in the Hengduan Mountains. Nat Prod Commun. 2015 Jan;10(1):53-6. [PubMed:25920219 ]
- LOTUS database [Link]
|
---|