Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-10 11:22:43 UTC |
---|
Updated at | 2022-09-10 11:22:43 UTC |
---|
NP-MRD ID | NP0299513 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 2,31-dimethoxy-2,6,10,14,19,23,27,31-octamethyldotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaene |
---|
Description | Spirilloxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. 2,31-dimethoxy-2,6,10,14,19,23,27,31-octamethyldotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaene is found in Afifella marina, Erythrobacter longus, Rhodomicrobium vannielii, Rhodospirillum rubrum and Rhodovibrio salinarum. 2,31-dimethoxy-2,6,10,14,19,23,27,31-octamethyldotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaene was first documented in 2019 (PMID: 30682824). Based on a literature review a significant number of articles have been published on Spirilloxanthin (PMID: 33361324) (PMID: 35390753) (PMID: 35056529) (PMID: 34686745) (PMID: 33629714) (PMID: 33526758). |
---|
Structure | COC(C)(C)CC=CC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)C=CCC(C)(C)OC InChI=1S/C42H60O2/c1-35(23-15-25-37(3)27-17-29-39(5)31-19-33-41(7,8)43-11)21-13-14-22-36(2)24-16-26-38(4)28-18-30-40(6)32-20-34-42(9,10)44-12/h13-32H,33-34H2,1-12H3 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C42H60O2 |
---|
Average Mass | 596.9400 Da |
---|
Monoisotopic Mass | 596.45933 Da |
---|
IUPAC Name | Not Available |
---|
Traditional Name | Not Available |
---|
CAS Registry Number | Not Available |
---|
SMILES | COC(C)(C)CC=CC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)C=CCC(C)(C)OC |
---|
InChI Identifier | InChI=1S/C42H60O2/c1-35(23-15-25-37(3)27-17-29-39(5)31-19-33-41(7,8)43-11)21-13-14-22-36(2)24-16-26-38(4)28-18-30-40(6)32-20-34-42(9,10)44-12/h13-32H,33-34H2,1-12H3 |
---|
InChI Key | VAZQBTJCYODOSV-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Tetraterpenoids |
---|
Direct Parent | Xanthophylls |
---|
Alternative Parents | |
---|
Substituents | - Xanthophyll
- Ether
- Dialkyl ether
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Kopejtka K, Tomasch J, Zeng Y, Selyanin V, Dachev M, Piwosz K, Tichy M, Bina D, Gardian Z, Bunk B, Brinkmann H, Geffers R, Sommaruga R, Koblizek M: Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium. mSystems. 2020 Dec 22;5(6). pii: 5/6/e01044-20. doi: 10.1128/mSystems.01044-20. [PubMed:33361324 ]
- Culka A, Jehlicka J, Oren A, Rousaki A, Vandenabeele P: Fast outdoor screening and discrimination of carotenoids of halophilic microorganisms using miniaturized Raman spectrometers. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Aug 5;276:121156. doi: 10.1016/j.saa.2022.121156. Epub 2022 Mar 18. [PubMed:35390753 ]
- Saini MK, Yoshida S, Sebastian A, Hara E, Tamaki H, Soulier NT, Albert I, Hanada S, Tank M, Bryant DA: Elioraea tepida, sp. nov., a Moderately Thermophilic Aerobic Anoxygenic Phototrophic Bacterium Isolated from the Mat Community of an Alkaline Siliceous Hot Spring in Yellowstone National Park, WY, USA. Microorganisms. 2021 Dec 31;10(1):80. doi: 10.3390/microorganisms10010080. [PubMed:35056529 ]
- Nouwen N, Chaintreuil C, Fardoux J, Giraud E: A glutamate synthase mutant of Bradyrhizobium sp. strain ORS285 is unable to induce nodules on Nod factor-independent Aeschynomene species. Sci Rep. 2021 Oct 22;11(1):20910. doi: 10.1038/s41598-021-00480-7. [PubMed:34686745 ]
- Mishra S, Singh Chanotiya C, Shanker K, Kumar Tripathi A: Characterization of carotenoids and genes encoding their biosynthetic pathways in Azospirillum brasilense. FEMS Microbiol Lett. 2021 Apr 8;368(5):fnab025. doi: 10.1093/femsle/fnab025. [PubMed:33629714 ]
- Cho SH, Jeong Y, Lee E, Ko SR, Ahn CY, Oh HM, Cho BK, Cho S: Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M. J Microbiol Biotechnol. 2021 Apr 28;31(4):601-609. doi: 10.4014/jmb.2012.12054. [PubMed:33526758 ]
- Saini MK, ChihChe W, Soulier N, Sebastian A, Albert I, Thiel V, Bryant DA, Hanada S, Tank M: Caldichromatium japonicum gen. nov., sp. nov., a novel thermophilic phototrophic purple sulphur bacterium of the Chromatiaceae isolated from Nakabusa hot springs, Japan. Int J Syst Evol Microbiol. 2020 Nov;70(11):5701-5710. doi: 10.1099/ijsem.0.004465. [PubMed:32931408 ]
- G S, Kumar D, Uppada J, Ch S, Ch V R: Rhodomicrobium lacus sp. nov., an alkalitolerent bacterium isolated from Umiam lake, Shillong, India. Int J Syst Evol Microbiol. 2020 Jan;70(1):662-667. doi: 10.1099/ijsem.0.003813. [PubMed:31661050 ]
- Buddhi S, G S, Gupta D, Ch S, Ch V R: Afifella aestuarii sp. nov., a phototrophic bacterium. Int J Syst Evol Microbiol. 2020 Jan;70(1):327-333. doi: 10.1099/ijsem.0.003756. [PubMed:31592760 ]
- Autenrieth C, Ghosh R: The Methoxylated, Highly Conjugated C(40) Carotenoids, Spirilloxanthin and Anhydrorhodovibrin, Can Be Separated Using High Performance Liquid Chromatography with Safe and Environmentally Friendly Solvents. Metabolites. 2019 Jan 24;9(2):20. doi: 10.3390/metabo9020020. [PubMed:30682824 ]
- LOTUS database [Link]
|
---|