Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-10 11:12:08 UTC |
---|
Updated at | 2022-09-10 11:12:09 UTC |
---|
NP-MRD ID | NP0299396 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | α-escin |
---|
Description | Escin Ia belongs to the class of organic compounds known as triterpene saponins. These are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. α-escin is found in Aesculus chinensis and Aesculus hippocastanum. α-escin was first documented in 2004 (PMID: 14970884). Based on a literature review a significant number of articles have been published on escin Ia (PMID: 35527978) (PMID: 34324856) (PMID: 32158393) (PMID: 26819933) (PMID: 20662111) (PMID: 35306344). |
---|
Structure | C\C=C(/C)C(=O)O[C@H]1[C@H](OC(C)=O)[C@]2(CO)[C@H](O)C[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CC[C@H](O[C@@H]6O[C@@H]([C@@H](O[C@@H]7O[C@H](CO)[C@@H](O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O[C@@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)C(O)=O)[C@](C)(CO)[C@@H]5CC[C@@]34C)[C@@H]2CC1(C)C InChI=1S/C55H86O24/c1-10-23(2)46(71)79-43-44(72-24(3)60)55(22-59)26(17-50(43,4)5)25-11-12-30-51(6)15-14-32(52(7,21-58)29(51)13-16-53(30,8)54(25,9)18-31(55)61)75-49-41(77-48-38(67)36(65)34(63)28(20-57)74-48)39(68)40(42(78-49)45(69)70)76-47-37(66)35(64)33(62)27(19-56)73-47/h10-11,26-44,47-49,56-59,61-68H,12-22H2,1-9H3,(H,69,70)/b23-10+/t26-,27+,28+,29+,30+,31+,32-,33+,34+,35-,36-,37+,38+,39-,40-,41+,42-,43-,44-,47-,48-,49+,51-,52+,53+,54+,55-/m0/s1 |
---|
Synonyms | |
---|
Chemical Formula | C55H86O24 |
---|
Average Mass | 1131.2690 Da |
---|
Monoisotopic Mass | 1130.55090 Da |
---|
IUPAC Name | Not Available |
---|
Traditional Name | Not Available |
---|
CAS Registry Number | Not Available |
---|
SMILES | C\C=C(/C)C(=O)O[C@H]1[C@H](OC(C)=O)[C@]2(CO)[C@H](O)C[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CC[C@H](O[C@@H]6O[C@@H]([C@@H](O[C@@H]7O[C@H](CO)[C@@H](O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O[C@@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)C(O)=O)[C@](C)(CO)[C@@H]5CC[C@@]34C)[C@@H]2CC1(C)C |
---|
InChI Identifier | InChI=1S/C55H86O24/c1-10-23(2)46(71)79-43-44(72-24(3)60)55(22-59)26(17-50(43,4)5)25-11-12-30-51(6)15-14-32(52(7,21-58)29(51)13-16-53(30,8)54(25,9)18-31(55)61)75-49-41(77-48-38(67)36(65)34(63)28(20-57)74-48)39(68)40(42(78-49)45(69)70)76-47-37(66)35(64)33(62)27(19-56)73-47/h10-11,26-44,47-49,56-59,61-68H,12-22H2,1-9H3,(H,69,70)/b23-10+/t26-,27+,28+,29+,30+,31+,32-,33+,34+,35-,36-,37+,38+,39-,40-,41+,42-,43-,44-,47-,48-,49+,51-,52+,53+,54+,55-/m0/s1 |
---|
InChI Key | AXNVHPCVMSNXNP-IVKVKCDBSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as triterpene saponins. These are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Terpene glycosides |
---|
Direct Parent | Triterpene saponins |
---|
Alternative Parents | |
---|
Substituents | - Triterpene saponin
- Triterpenoid
- Oligosaccharide
- Hydroxysteroid
- 16-oxosteroid
- Oxosteroid
- 7-alpha-hydroxysteroid
- 7-hydroxysteroid
- Steroid
- Fatty acyl glycoside
- 1-o-glucuronide
- O-glucuronide
- Glucuronic acid or derivatives
- Glycosyl compound
- O-glycosyl compound
- Tricarboxylic acid or derivatives
- Fatty acid ester
- Fatty acyl
- Pyran
- Oxane
- Alpha,beta-unsaturated carboxylic ester
- Enoate ester
- Cyclic alcohol
- Secondary alcohol
- Carboxylic acid ester
- Polyol
- Acetal
- Organoheterocyclic compound
- Carboxylic acid
- Carboxylic acid derivative
- Oxacycle
- Primary alcohol
- Organic oxide
- Hydrocarbon derivative
- Carbonyl group
- Organic oxygen compound
- Organooxygen compound
- Alcohol
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Yang Y, Long L, Zhang X, Song K, Wang D, Xiong X, Gao H, Sha L: 16-Tigloyl linked barrigenol-like triterpenoid from Semen Aesculi and its anti-tumor activity in vivo and in vitro. RSC Adv. 2019 Oct 7;9(54):31758-31772. doi: 10.1039/c9ra06015d. eCollection 2019 Oct 1. [PubMed:35527978 ]
- Sun Y, Zhang X, Shen X, Wang S, Wang Q, Yang X: Computational and experimental characterization of isomers of escin-induced renal cytotoxicity by inhibiting heat shock proteins. Eur J Pharmacol. 2021 Oct 5;908:174372. doi: 10.1016/j.ejphar.2021.174372. Epub 2021 Jul 27. [PubMed:34324856 ]
- Sun Y, Jiang X, Pan R, Zhou X, Qin D, Xiong R, Wang Y, Qiu W, Wu A, Wu J: Escins Isolated from Aesculus chinensis Bge. Promote the Autophagic Degradation of Mutant Huntingtin and Inhibit its Induced Apoptosis in HT22 cells. Front Pharmacol. 2020 Feb 25;11:116. doi: 10.3389/fphar.2020.00116. eCollection 2020. [PubMed:32158393 ]
- Abudayeh ZH, Al Azzam KM, Naddaf A, Karpiuk UV, Kislichenko VS: Determination of Four Major Saponins in Skin and Endosperm of Seeds of Horse Chestnut (Aesculus Hippocastanum L.) Using High Performance Liquid Chromatography with Positive Confirmation by Thin Layer Chromatography. Adv Pharm Bull. 2015 Nov;5(4):587-91. doi: 10.15171/apb.2015.079. Epub 2015 Nov 30. [PubMed:26819933 ]
- Liu L, Wu X, Wu D, Wang Y, Li P, Sun Y, Yang Y, Gu J, Cui Y: A liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of escin Ia and escin Ib in human plasma: application to a pharmacokinetic study after intravenous administration. Biomed Chromatogr. 2010 Dec;24(12):1309-15. doi: 10.1002/bmc.1441. [PubMed:20662111 ]
- Wang D, Sha L, Xu C, Huang Y, Tang C, Xu T, Li X, Di D, Liu J, Yang L: Natural saponin and cholesterol assembled nanostructures as the promising delivery method for saponin. Colloids Surf B Biointerfaces. 2022 Jun;214:112448. doi: 10.1016/j.colsurfb.2022.112448. Epub 2022 Mar 14. [PubMed:35306344 ]
- Wang Y, Xu X, Zhao P, Tong B, Wei Z, Dai Y: Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression. Oncotarget. 2016 Apr 26;7(17):23684-99. doi: 10.18632/oncotarget.8152. [PubMed:27008697 ]
- Wu XJ, Cui XY, Tian LT, Gao F, Guan X, Gu JK: Pharmacokinetics of escin Ia in rats after intravenous administration. J Ethnopharmacol. 2014 Oct 28;156:125-9. doi: 10.1016/j.jep.2014.08.032. Epub 2014 Sep 3. [PubMed:25193683 ]
- Wu XJ, Zhang ML, Cui XY, Gao F, He Q, Li XJ, Zhang JW, Fawcett JP, Gu JK: Comparative pharmacokinetics and bioavailability of escin Ia and isoescin Ia after administration of escin and of pure escin Ia and isoescin Ia in rat. J Ethnopharmacol. 2012 Jan 6;139(1):201-6. doi: 10.1016/j.jep.2011.11.003. Epub 2011 Nov 10. [PubMed:22094055 ]
- Wu X, Liu L, Zhang M, Wu D, Wang Y, Sun Y, Fawcett JP, Gu J, Zhang J: Simultaneous analysis of isomers of escin saponins in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Apr 1;878(11-12):861-7. doi: 10.1016/j.jchromb.2010.02.002. Epub 2010 Feb 6. [PubMed:20185376 ]
- Chen J, Li W, Yang B, Guo X, Lee FS, Wang X: Determination of four major saponins in the seeds of Aesculus chinensis Bunge using accelerated solvent extraction followed by high-performance liquid chromatography and electrospray-time of flight mass spectrometry. Anal Chim Acta. 2007 Jul 23;596(2):273-80. doi: 10.1016/j.aca.2007.06.011. Epub 2007 Jun 12. [PubMed:17631106 ]
- Li B, Abliz Z, Fu G, Tang M, Yu S: Characteristic fragmentation behavior of some glucuronide-type triterpenoid saponins using electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(3):381-90. doi: 10.1002/rcm.1803. [PubMed:15645513 ]
- Yang XW, Zhao J, Cui JR, Guo W: [Studies on the biotransformation of escin Ia by human intestinal bacteria and the anti-tumor activities of desacylescin I]. Beijing Da Xue Xue Bao Yi Xue Ban. 2004 Feb;36(1):31-5. [PubMed:14970884 ]
- LOTUS database [Link]
|
---|