Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-09 23:37:28 UTC |
---|
Updated at | 2022-09-09 23:37:28 UTC |
---|
NP-MRD ID | NP0292202 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | {[(4e,6e,8s,9s,10e,12s,13r,14s,16s,17r)-3-hydroxy-8,13,14,17-tetramethoxy-4,10,12,16-tetramethyl-20,22-dioxo-2-azabicyclo[16.3.1]docosa-1(21),2,4,6,10,18-hexaen-9-yl]oxy}methanimidic acid |
---|
Description | Herbimycin a belongs to the class of organic compounds known as macrolactams. These are cyclic amides of amino carboxylic acids, having a 1-azacycloalkan-2-one structure, or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring. They are nitrogen analogues (the a nitrogen atom replacing the o atom of the cyclic carboxylic acid group ) of the naturally occurring macrolides. {[(4e,6e,8s,9s,10e,12s,13r,14s,16s,17r)-3-hydroxy-8,13,14,17-tetramethoxy-4,10,12,16-tetramethyl-20,22-dioxo-2-azabicyclo[16.3.1]docosa-1(21),2,4,6,10,18-hexaen-9-yl]oxy}methanimidic acid was first documented in 2014 (PMID: 25446094). Based on a literature review a significant number of articles have been published on herbimycin a (PMID: 26187180) (PMID: 31120191) (PMID: 30343052) (PMID: 30221721) (PMID: 30093405) (PMID: 28222358). |
---|
Structure | CO[C@H]1C[C@H](C)[C@@H](OC)C2=CC(=O)C=C(N=C(O)\C(C)=C\C=C\[C@H](OC)[C@@H](OC(O)=N)\C(C)=C\[C@H](C)[C@H]1OC)C2=O InChI=1S/C30H42N2O9/c1-16-10-9-11-23(37-5)28(41-30(31)36)18(3)12-17(2)27(40-8)24(38-6)13-19(4)26(39-7)21-14-20(33)15-22(25(21)34)32-29(16)35/h9-12,14-15,17,19,23-24,26-28H,13H2,1-8H3,(H2,31,36)(H,32,35)/b11-9+,16-10+,18-12+/t17-,19-,23-,24-,26+,27+,28-/m0/s1 |
---|
Synonyms | Value | Source |
---|
Herbimycin | MeSH |
|
---|
Chemical Formula | C30H42N2O9 |
---|
Average Mass | 574.6710 Da |
---|
Monoisotopic Mass | 574.28903 Da |
---|
IUPAC Name | Not Available |
---|
Traditional Name | Not Available |
---|
CAS Registry Number | Not Available |
---|
SMILES | CO[C@H]1C[C@H](C)[C@@H](OC)C2=CC(=O)C=C(N=C(O)\C(C)=C\C=C\[C@H](OC)[C@@H](OC(O)=N)\C(C)=C\[C@H](C)[C@H]1OC)C2=O |
---|
InChI Identifier | InChI=1S/C30H42N2O9/c1-16-10-9-11-23(37-5)28(41-30(31)36)18(3)12-17(2)27(40-8)24(38-6)13-19(4)26(39-7)21-14-20(33)15-22(25(21)34)32-29(16)35/h9-12,14-15,17,19,23-24,26-28H,13H2,1-8H3,(H2,31,36)(H,32,35)/b11-9+,16-10+,18-12+/t17-,19-,23-,24-,26+,27+,28-/m0/s1 |
---|
InChI Key | MCAHMSDENAOJFZ-GDYSMBPZSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Not Available |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as macrolactams. These are cyclic amides of amino carboxylic acids, having a 1-azacycloalkan-2-one structure, or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring. They are nitrogen analogues (the a nitrogen atom replacing the o atom of the cyclic carboxylic acid group ) of the naturally occurring macrolides. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Macrolactams |
---|
Sub Class | Not Available |
---|
Direct Parent | Macrolactams |
---|
Alternative Parents | |
---|
Substituents | - Macrolactam
- Carbamic acid ester
- Vinylogous amide
- Carboxamide group
- Ketone
- Lactam
- Carbonic acid derivative
- Secondary carboxylic acid amide
- Cyclic ketone
- Carboxylic acid derivative
- Dialkyl ether
- Ether
- Azacycle
- Organoheterocyclic compound
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Hydrocarbon derivative
- Organonitrogen compound
- Organooxygen compound
- Carbonyl group
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Yamaori S, Kinugasa Y, Jiang R, Takeda S, Yamamoto I, Watanabe K: Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Sci. 2015 Sep 1;136:87-93. doi: 10.1016/j.lfs.2015.07.007. Epub 2015 Jul 15. [PubMed:26187180 ]
- Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ: Herbimycin A inhibits cell growth with reversal of epithelial-mesenchymal transition in anaplastic thyroid carcinoma cells. Biochem Biophys Res Commun. 2014 Dec 12;455(3-4):363-70. doi: 10.1016/j.bbrc.2014.11.018. Epub 2014 Nov 15. [PubMed:25446094 ]
- Liang S, Lin X, Liang Y, Song D, Zhang L, Fan X: Killing Effects of IFN R(-/-) Mouse NK Cells Activated by HN Protein of NDV on Mouse Hepatoma Cells and Possible Mechanism with Syk and NF-kappaB. Anat Rec (Hoboken). 2019 Oct;302(10):1718-1725. doi: 10.1002/ar.24177. Epub 2019 Jun 12. [PubMed:31120191 ]
- D'Andrea P, Sciancalepore M, Veltruska K, Lorenzon P, Bandiera A: Epidermal Growth Factor - based adhesion substrates elicit myoblast scattering, proliferation, differentiation and promote satellite cell myogenic activation. Biochim Biophys Acta Mol Cell Res. 2019 Mar;1866(3):504-517. doi: 10.1016/j.bbamcr.2018.10.012. Epub 2018 Oct 18. [PubMed:30343052 ]
- Zhang G, Gui S, Wang W, Meng D, Meng Q, Luan H, Zhao R, Zhang J, Sui H: Acute stimulatory effect of tumor necrosis factor on the basolateral 50 pS K channels in the thick ascending limb of the rat kidney. Mol Med Rep. 2018 Nov;18(5):4733-4738. doi: 10.3892/mmr.2018.9475. Epub 2018 Sep 10. [PubMed:30221721 ]
- Nakazono A, Adachi N, Takahashi H, Seki T, Hamada D, Ueyama T, Sakai N, Saito N: Pharmacological induction of heat shock proteins ameliorates toxicity of mutant PKCgamma in spinocerebellar ataxia type 14. J Biol Chem. 2018 Sep 21;293(38):14758-14774. doi: 10.1074/jbc.RA118.002913. Epub 2018 Aug 9. [PubMed:30093405 ]
- El-Shazly AE, Roncarati P, Lejeune M, Lefebvre PP, Delvenne P: Tyrosine kinase inhibition is an important factor for gene expression of CRTH2 in human eosinophils and lymphocytes: A novel mechanism for explaining eosinophils recruitment by the neuro-immune axis in allergic rhinitis. Int Immunopharmacol. 2017 Apr;45:180-186. doi: 10.1016/j.intimp.2017.02.015. Epub 2017 Feb 20. [PubMed:28222358 ]
- Osterroos A, Kashif M, Haglund C, Blom K, Hoglund M, Andersson C, Gustafsson MG, Eriksson A, Larsson R: Combination screening in vitro identifies synergistically acting KP372-1 and cytarabine against acute myeloid leukemia. Biochem Pharmacol. 2016 Oct 15;118:40-49. doi: 10.1016/j.bcp.2016.08.020. Epub 2016 Aug 24. [PubMed:27565890 ]
- Zhang Z, Xue N, Bian C, Yan R, Jin L, Chen X, Yu X: C15-methoxyphenylated 18-deoxy-herbimycin A analogues, their in vitro anticancer activity and heat shock protein 90 binding affinity. Bioorg Med Chem Lett. 2016 Sep 1;26(17):4287-91. doi: 10.1016/j.bmcl.2016.07.040. Epub 2016 Jul 20. [PubMed:27476419 ]
- An YW, Jhang KA, Woo SY, Kang JL, Chong YH: Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging. 2016 Feb;38:1-10. doi: 10.1016/j.neurobiolaging.2015.10.016. Epub 2015 Oct 23. [PubMed:26827637 ]
- Akiyama M, Yamada O, Akita S, Urashima M, Horiguchi-Yamada J, Ohno T, Mizoguchi H, Eto Y, Yamada H: Ectopic expression of c-myc fails to overcome downregulation of telomerase activity induced by herbimycin A, but ectopic hTERT expression overcomes it. Leukemia. 2015 Nov;29(11):2274. doi: 10.1038/leu.2015.266. [PubMed:26531889 ]
- Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ: 17-Allylamino-17-demethoxygeldanamycin and Herbimycin A Induce Cell Death by Modulating beta-Catenin and PI3K/AKT Signaling in FRO Anaplastic Thyroid Carcinoma Cells. Anticancer Res. 2015 Oct;35(10):5453-60. [PubMed:26408708 ]
- Lin J, Xu Y, Zhao T, Sun L, Yang M, Liu T, Sun H, Zhang L: Genistein suppresses smooth muscle cell-derived foam cell formation through tyrosine kinase pathway. Biochem Biophys Res Commun. 2015 Aug 7;463(4):1297-304. doi: 10.1016/j.bbrc.2015.04.155. Epub 2015 Jun 18. [PubMed:26093297 ]
- Eberwein P, Laird D, Schulz S, Reinhard T, Steinberg T, Tomakidi P: Modulation of focal adhesion constituents and their down-stream events by EGF: On the cross-talk of integrins and growth factor receptors. Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2183-98. doi: 10.1016/j.bbamcr.2015.06.004. Epub 2015 Jun 14. [PubMed:26079101 ]
- Shin DH, Lee MJ, Jiao HY, Choi S, Kim MW, Park CG, Na J, Kim SW, Park IK, So I, Jun JY: Regulatory Roles of Endogenous Mitogen-Activated Protein Kinases and Tyrosine Kinases in the Pacemaker Activity of Colonic Interstitial Cells of Cajal. Pharmacology. 2015;96(1-2):16-24. doi: 10.1159/000430990. Epub 2015 May 30. [PubMed:26043726 ]
- Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ: Novel heat shock protein 90 inhibitor NVP-AUY922 synergizes with the histone deacetylase inhibitor PXD101 in induction of death of anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab. 2015 Feb;100(2):E253-61. doi: 10.1210/jc.2014-3101. Epub 2014 Nov 12. [PubMed:25389633 ]
- LOTUS database [Link]
|
---|