| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-09 23:33:49 UTC |
|---|
| Updated at | 2022-09-09 23:33:49 UTC |
|---|
| NP-MRD ID | NP0292157 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene |
|---|
| Description | Cis-Lycopene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene is found in Afifella marina, Allomyces javanicus, Calendula officinalis, Citrus reticulata, Cyclamen persicum, Diospyros kaki, Gnaphalium uliginosum, Palisota barteri, Phaffia rhodozyma, Phallus rugulosus, Psidium guajava, Pyracantha angustifolia, Rhodotorula mucilaginosa, Rhodovibrio salinarum, Rosa villosa and Shepherdia canadensis. 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene was first documented in 2017 (PMID: 28345329). Based on a literature review a significant number of articles have been published on cis-Lycopene (PMID: 35696908) (PMID: 34504943) (PMID: 33856048) (PMID: 33271766) (PMID: 32635217) (PMID: 32517202). |
|---|
| Structure | CC(C)=CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C InChI=1S/C40H56/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15-22,25-32H,13-14,23-24H2,1-10H3 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C40H56 |
|---|
| Average Mass | 536.8880 Da |
|---|
| Monoisotopic Mass | 536.43820 Da |
|---|
| IUPAC Name | 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene |
|---|
| Traditional Name | 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)=CCCC(C)=CC=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C |
|---|
| InChI Identifier | InChI=1S/C40H56/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15-22,25-32H,13-14,23-24H2,1-10H3 |
|---|
| InChI Key | OAIJSZIZWZSQBC-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Tetraterpenoids |
|---|
| Direct Parent | Carotenes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Carotene
- Branched unsaturated hydrocarbon
- Unsaturated aliphatic hydrocarbon
- Unsaturated hydrocarbon
- Olefin
- Acyclic olefin
- Hydrocarbon
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Nayak JJ, Anwar S, Krishna P, Chen ZH, Plett JM, Foo E, Cazzonelli CI: Tangerine tomato roots show increased accumulation of acyclic carotenoids, less abscisic acid, drought sensitivity, and impaired endomycorrhizal colonization. Plant Sci. 2022 Aug;321:111308. doi: 10.1016/j.plantsci.2022.111308. Epub 2022 May 5. [PubMed:35696908 ]
- Koch M, Furtado JD, Cronje HT, DeKosky ST, Fitzpatrick AL, Lopez OL, Kuller LH, Mukamal KJ, Jensen MK: Plasma antioxidants and risk of dementia in older adults. Alzheimers Dement (N Y). 2021 Sep 5;7(1):e12208. doi: 10.1002/trc2.12208. eCollection 2021. [PubMed:34504943 ]
- Yang C, Jiang X, Ma L, Xiong W, Zhang S, Zhang J, Zhang L: Carotenoid composition and antioxidant activities of Chinese orange-colored tomato cultivars and the effects of thermal processing on the bioactive components. J Food Sci. 2021 May;86(5):1751-1765. doi: 10.1111/1750-3841.15682. Epub 2021 Apr 15. [PubMed:33856048 ]
- Ghendov-Mosanu A, Cristea E, Patras A, Sturza R, Niculaua M: Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules. 2020 Dec 1;25(23):5659. doi: 10.3390/molecules25235659. [PubMed:33271766 ]
- Akpolat H, Barineau M, Jackson KA, Akpolat MZ, Francis DM, Chen YJ, Rodriguez-Saona LE: High-Throughput Phenotyping Approach for Screening Major Carotenoids of Tomato by Handheld Raman Spectroscopy Using Chemometric Methods. Sensors (Basel). 2020 Jul 3;20(13):3723. doi: 10.3390/s20133723. [PubMed:32635217 ]
- Chiva-Blanch G, Jimenez C, Pinyol M, Herreras Z, Catalan M, Martinez-Huelamo M, Lamuela-Raventos RM, Sala-Vila A, Cofan M, Gilabert R, Jimenez A, Ortega E: 5-cis-, Trans- and Total Lycopene Plasma Concentrations Inversely Relate to Atherosclerotic Plaque Burden in Newly Diagnosed Type 2 Diabetes Subjects. Nutrients. 2020 Jun 6;12(6):1696. doi: 10.3390/nu12061696. [PubMed:32517202 ]
- Shanely RA, Zwetsloot JJ, Jurrissen TJ, Hannan LC, Zwetsloot KA, Needle AR, Bishop AE, Wu G, Perkins-Veazie P: Daily watermelon consumption decreases plasma sVCAM-1 levels in overweight and obese postmenopausal women. Nutr Res. 2020 Apr;76:9-19. doi: 10.1016/j.nutres.2020.02.005. Epub 2020 Feb 8. [PubMed:32142970 ]
- Lu Q, Li L, Xue S, Yang D, Wang S: Stability of Flavonoid, Carotenoid, Soluble Sugar and Vitamin C in 'Cara Cara' Juice during Storage. Foods. 2019 Sep 16;8(9):417. doi: 10.3390/foods8090417. [PubMed:31527534 ]
- Kim S, Oh J, Jang CH, Kim JS: Improvement of cognitive function by Gochujang supplemented with tomato paste in a mouse model. Food Sci Biotechnol. 2019 Feb 6;28(4):1225-1233. doi: 10.1007/s10068-019-00565-0. eCollection 2019 Aug. [PubMed:31275723 ]
- Hurtado-Barroso S, Martinez-Huelamo M, Rinaldi de Alvarenga JF, Quifer-Rada P, Vallverdu-Queralt A, Perez-Fernandez S, Lamuela-Raventos RM: Acute Effect of a Single Dose of Tomato Sofrito on Plasmatic Inflammatory Biomarkers in Healthy Men. Nutrients. 2019 Apr 15;11(4):851. doi: 10.3390/nu11040851. [PubMed:30991720 ]
- Hanson C, Lyden E, Furtado J, Van Ormer M, White K, Overby N, Anderson-Berry A: Serum Lycopene Concentrations and Associations with Clinical Outcomes in a Cohort of Maternal-Infant Dyads. Nutrients. 2018 Feb 13;10(2):204. doi: 10.3390/nu10020204. [PubMed:29438287 ]
- McQuinn RP, Wong B, Giovannoni JJ: AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content. Plant Biotechnol J. 2018 Feb;16(2):482-494. doi: 10.1111/pbi.12789. Epub 2017 Sep 11. [PubMed:28703352 ]
- Soares ND, Machado CL, Trindade BB, Lima IC, Gimba ER, Teodoro AJ, Takiya Ch, Borojevic R: Lycopene Extracts from Different Tomato-Based Food Products Induce Apoptosis in Cultured Human Primary Prostate Cancer Cells and Regulate TP53, Bax and Bcl-2 Transcript Expression. Asian Pac J Cancer Prev. 2017 Feb 1;18(2):339-345. doi: 10.22034/APJCP.2017.18.2.339. [PubMed:28345329 ]
- LOTUS database [Link]
|
|---|