Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-09 22:54:48 UTC |
---|
Updated at | 2022-09-09 22:54:48 UTC |
---|
NP-MRD ID | NP0291718 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (1s,2s,4s,7s,8s,10r,11s,13r,16r)-11-methyl-4-(prop-1-en-2-yl)-14,17-dioxapentacyclo[8.5.1.1⁸,¹¹.0²,⁷.0¹³,¹⁶]heptadecane-6,9,15-trione |
---|
Description | Ineleganolide belongs to the class of organic compounds known as terpene lactones. These are prenol lipids containing a lactone ring. (1s,2s,4s,7s,8s,10r,11s,13r,16r)-11-methyl-4-(prop-1-en-2-yl)-14,17-dioxapentacyclo[8.5.1.1⁸,¹¹.0²,⁷.0¹³,¹⁶]heptadecane-6,9,15-trione was first documented in 2018 (PMID: 29260557). Based on a literature review a small amount of articles have been published on Ineleganolide (PMID: 34305185) (PMID: 31066273) (PMID: 30774926) (PMID: 29464957). |
---|
Structure | CC(=C)[C@H]1C[C@@H]2[C@H]3[C@@H]4[C@@H](C[C@]5(C)O[C@@H]([C@H]2C(=O)C1)C(=O)[C@H]45)OC3=O InChI=1S/C19H22O5/c1-7(2)8-4-9-12(10(20)5-8)17-16(21)15-14-11(6-19(15,3)24-17)23-18(22)13(9)14/h8-9,11-15,17H,1,4-6H2,2-3H3/t8-,9-,11+,12+,13-,14-,15-,17-,19-/m0/s1 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C19H22O5 |
---|
Average Mass | 330.3800 Da |
---|
Monoisotopic Mass | 330.14672 Da |
---|
IUPAC Name | Not Available |
---|
Traditional Name | Not Available |
---|
CAS Registry Number | Not Available |
---|
SMILES | CC(=C)[C@H]1C[C@@H]2[C@H]3[C@@H]4[C@@H](C[C@]5(C)O[C@@H]([C@H]2C(=O)C1)C(=O)[C@H]45)OC3=O |
---|
InChI Identifier | InChI=1S/C19H22O5/c1-7(2)8-4-9-12(10(20)5-8)17-16(21)15-14-11(6-19(15,3)24-17)23-18(22)13(9)14/h8-9,11-15,17H,1,4-6H2,2-3H3/t8-,9-,11+,12+,13-,14-,15-,17-,19-/m0/s1 |
---|
InChI Key | PYPSGVNKYAOLQT-LUNHQKHWSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Not Available |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as terpene lactones. These are prenol lipids containing a lactone ring. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Terpene lactones |
---|
Direct Parent | Terpene lactones |
---|
Alternative Parents | |
---|
Substituents | - Terpene lactone
- Sesquiterpenoid
- 3-furanone
- Gamma butyrolactone
- Oxolane
- Carboxylic acid ester
- Ketone
- Lactone
- Carboxylic acid derivative
- Dialkyl ether
- Ether
- Oxacycle
- Organoheterocyclic compound
- Monocarboxylic acid or derivatives
- Organic oxide
- Hydrocarbon derivative
- Organic oxygen compound
- Carbonyl group
- Organooxygen compound
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Thomas SAL, von Salm JL, Clark S, Ferlita S, Nemani P, Azhari A, Rice CA, Wilson NG, Kyle DE, Baker BJ: Keikipukalides, Furanocembrane Diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. J Nat Prod. 2018 Jan 26;81(1):117-123. doi: 10.1021/acs.jnatprod.7b00732. Epub 2017 Dec 20. [PubMed:29260557 ]
- Cusumano AQ, Houk KN, Stoltz BM: Synthetic strategy toward ineleganolide: A cautionary tale. Tetrahedron. 2021 Jul 30;93:132289. doi: 10.1016/j.tet.2021.132289. Epub 2021 Jun 23. [PubMed:34305185 ]
- Craig RA 2nd, Smith RC, Roizen JL, Jones AC, Virgil SC, Stoltz BM: Unified Enantioselective, Convergent Synthetic Approach toward the Furanobutenolide-Derived Polycyclic Norcembranoid Diterpenes: Synthesis of a Series of Ineleganoloids by Oxidation-State Manipulation of the Carbocyclic Core. J Org Chem. 2019 Jun 21;84(12):7722-7746. doi: 10.1021/acs.joc.9b00635. Epub 2019 Jun 10. [PubMed:31066273 ]
- Craig RA 2nd, Roizen JL, Smith RC, Jones AC, Virgil SC, Stoltz BM: Correction: Enantioselective, convergent synthesis of the ineleganolide core by a tandem annulation cascade. Chem Sci. 2019 Jan 14;10(4):1254-1255. doi: 10.1039/c8sc90236d. eCollection 2019 Jan 28. [PubMed:30774926 ]
- Craig RA 2nd, Smith RC, Roizen JL, Jones AC, Virgil SC, Stoltz BM: Development of a Unified Enantioselective, Convergent Synthetic Approach Toward the Furanobutenolide-Derived Polycyclic Norcembranoid Diterpenes: Asymmetric Formation of the Polycyclic Norditerpenoid Carbocyclic Core by Tandem Annulation Cascade. J Org Chem. 2018 Apr 6;83(7):3467-3485. doi: 10.1021/acs.joc.7b02825. Epub 2018 Mar 19. [PubMed:29464957 ]
- LOTUS database [Link]
|
---|