| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-09 15:36:27 UTC |
|---|
| Updated at | 2022-09-09 15:36:27 UTC |
|---|
| NP-MRD ID | NP0286833 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | thiophene-2,5-dicarbaldehyde |
|---|
| Description | 2,5-Thiophenedicarboxaldehyde belongs to the class of organic compounds known as 2,5-disubstituted thiophenes. These are organic compounds containing a thiophene that is disubstituted at the C-2, and C5-positions. thiophene-2,5-dicarbaldehyde is found in Capparis spinosa. thiophene-2,5-dicarbaldehyde was first documented in 2014 (PMID: 29861878). Based on a literature review a small amount of articles have been published on 2,5-Thiophenedicarboxaldehyde (PMID: 29373560) (PMID: 35146413) (PMID: 30319959) (PMID: 24966893). |
|---|
| Structure | InChI=1S/C6H4O2S/c7-3-5-1-2-6(4-8)9-5/h1-4H |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C6H4O2S |
|---|
| Average Mass | 140.1600 Da |
|---|
| Monoisotopic Mass | 139.99320 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | O=CC1=CC=C(S1)C=O |
|---|
| InChI Identifier | InChI=1S/C6H4O2S/c7-3-5-1-2-6(4-8)9-5/h1-4H |
|---|
| InChI Key | OTMRXENQDSQACG-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as 2,5-disubstituted thiophenes. These are organic compounds containing a thiophene that is disubstituted at the C-2, and C5-positions. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Thiophenes |
|---|
| Sub Class | 2,5-disubstituted thiophenes |
|---|
| Direct Parent | 2,5-disubstituted thiophenes |
|---|
| Alternative Parents | |
|---|
| Substituents | - 2,5-disubstituted thiophene
- Aryl-aldehyde
- Heteroaromatic compound
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Aldehyde
- Aromatic heteromonocyclic compound
|
|---|
| Molecular Framework | Aromatic heteromonocyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Chen X, Yu J, Cui H, Xia S, Zhang X, Yang B: Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate. Molecules. 2018 Jan 26;23(2). pii: molecules23020247. doi: 10.3390/molecules23020247. [PubMed:29373560 ]
- Ni ZJ, Wei CK, Zheng AR, Thakur K, Zhang JG, Wei ZJ: Analysis of key precursor peptides and flavor components of flaxseed derived Maillard reaction products based on iBAQ mass spectrometry and molecular sensory science. Food Chem X. 2022 Jan 22;13:100224. doi: 10.1016/j.fochx.2022.100224. eCollection 2022 Mar 30. [PubMed:35146413 ]
- Li X, Guo X, Cheng Y, Zhao X, Fang Z, Luo Y, Xia S, Feng Y, Chen J, Yuan WE: pH-Responsive Cross-Linked Low Molecular Weight Polyethylenimine as an Efficient Gene Vector for Delivery of Plasmid DNA Encoding Anti-VEGF-shRNA for Tumor Treatment. Front Oncol. 2018 Sep 25;8:354. doi: 10.3389/fonc.2018.00354. eCollection 2018. [PubMed:30319959 ]
- Haque SA, Hossain MA: Molecular Recognition of Perchlorate Anion With a Cryptand-Based Synthetic Receptor. Adv Sci Technol. 2014 Sep-Oct;8(2):73-76. [PubMed:29861878 ]
- Grucela-Zajac M, Bijak K, Kula S, Filapek M, Wiacek M, Janeczek H, Skorka L, Gasiorowski J, Hingerl K, Sariciftci NS, Nosidlak N, Lewinska G, Sanetra J, Schab-Balcerzak E: (Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units. J Phys Chem C Nanomater Interfaces. 2014 Jun 19;118(24):13070-13086. doi: 10.1021/jp501168b. Epub 2014 May 21. [PubMed:24966893 ]
- LOTUS database [Link]
|
|---|