Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-09 15:29:32 UTC |
---|
Updated at | 2022-09-09 15:29:32 UTC |
---|
NP-MRD ID | NP0286762 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-5-ene |
---|
Description | Dehydrosparteine belongs to the class of organic compounds known as quinolizidines. Quinolizidines are compounds containing a quinolizidine moiety, which is a octahydro-2H-quinolizine derivative. (1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-5-ene is found in Adenocarpus hispanicus, Genista acanthoclada, Genista cinerascens, Plagiocarpus axillaris and Retama raetam. (1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-5-ene was first documented in 1986 (PMID: 3768256). Based on a literature review a significant number of articles have been published on Dehydrosparteine (PMID: 11549206) (PMID: 9264814) (PMID: 8646830) (PMID: 8528270) (PMID: 7741777) (PMID: 24248948). |
---|
Structure | C1CCN2C[C@H]3C[C@H](CN4C=CCC[C@H]34)[C@@H]2C1 InChI=1S/C15H24N2/c1-3-7-16-11-13-9-12(14(16)5-1)10-17-8-4-2-6-15(13)17/h3,7,12-15H,1-2,4-6,8-11H2/t12-,13-,14-,15+/m1/s1 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C15H24N2 |
---|
Average Mass | 232.3710 Da |
---|
Monoisotopic Mass | 232.19395 Da |
---|
IUPAC Name | (1R,2R,9R,10S)-7,15-diazatetracyclo[7.7.1.0^{2,7}.0^{10,15}]heptadec-5-ene |
---|
Traditional Name | (1R,2R,9R,10S)-7,15-diazatetracyclo[7.7.1.0^{2,7}.0^{10,15}]heptadec-5-ene |
---|
CAS Registry Number | Not Available |
---|
SMILES | C1CCN2C[C@H]3C[C@H](CN4C=CCC[C@H]34)[C@@H]2C1 |
---|
InChI Identifier | InChI=1S/C15H24N2/c1-3-7-16-11-13-9-12(14(16)5-1)10-17-8-4-2-6-15(13)17/h3,7,12-15H,1-2,4-6,8-11H2/t12-,13-,14-,15+/m1/s1 |
---|
InChI Key | BWKNRAAXVUYXAH-TUVASFSCSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as quinolizidines. Quinolizidines are compounds containing a quinolizidine moiety, which is a octahydro-2H-quinolizine derivative. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Quinolizidines |
---|
Sub Class | Not Available |
---|
Direct Parent | Quinolizidines |
---|
Alternative Parents | |
---|
Substituents | - Quinolizidine
- Tetrahydropyridine
- Piperidine
- Tertiary aliphatic amine
- Tertiary amine
- Allylamine
- Azacycle
- Enamine
- Organic nitrogen compound
- Hydrocarbon derivative
- Organonitrogen compound
- Amine
- Aliphatic heteropolycyclic compound
|
---|
Molecular Framework | Aliphatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Lohmann PL, Rao ML, Ludwig M, Griese EU, Zanger UM, Morike K, Maier W, Bagli M: Influence of CYP2D6 genotype and medication on the sparteine metabolic ratio of psychiatric patients. Eur J Clin Pharmacol. 2001 Jul;57(4):289-95. doi: 10.1007/s002280100299. [PubMed:11549206 ]
- Holoman J, Glasa J, Veningerova M, Prachar V, Lukacsova M: [Genetic polymorphism in sparteine oxidation--occurrence in healthy volunteers in Slovakia]. Bratisl Lek Listy. 1997 Feb;98(2):86-90. [PubMed:9264814 ]
- Kevorkian JP, Michel C, Hofmann U, Jacqz-Aigrain E, Kroemer HK, Peraldi MN, Eichelbaum M, Jaillon P, Funck-Brentano C: Assessment of individual CYP2D6 activity in extensive metabolizers with renal failure: comparison of sparteine and dextromethorphan. Clin Pharmacol Ther. 1996 May;59(5):583-92. doi: 10.1016/S0009-9236(96)90187-3. [PubMed:8646830 ]
- Crespi CL, Steimel DT, Penman BW, Korzekwa KR, Fernandez-Salguero P, Buters JT, Gelboin HV, Gonzalez FJ, Idle JR, Daly AK: Comparison of substrate metabolism by wild type CYP2D6 protein and a variant containing methionine, not valine, at position 374. Pharmacogenetics. 1995 Aug;5(4):234-43. doi: 10.1097/00008571-199508000-00007. [PubMed:8528270 ]
- Volz M, Mitrovic V, Thiemer J, Schlepper M: Steady-state plasma kinetics of slow-release propafenone, its two isomers and its main metabolites. Arzneimittelforschung. 1995 Mar;45(3):246-9. [PubMed:7741777 ]
- Wink M, Witte L: Quinolizidine alkaloids inGenista acanthoclada and its holoparasite,Cuscuta palaestina. J Chem Ecol. 1993 Mar;19(3):441-8. doi: 10.1007/BF00994317. [PubMed:24248948 ]
- Yoshino H, Hattori Y, Imai H, Narabayashi H, Chiba K: [Sparteine oxidation by hepatic cytochrome P-450 in patients with Parkinson's disease]. Rinsho Shinkeigaku. 1993 Mar;33(3):261-5. [PubMed:8334787 ]
- Ho JW, Moody DE: Gas chromatography/mass spectrometry assays for the determination of debrisoquine and sparteine metabolites in microsomal fractions of rat liver. Anal Biochem. 1992 Jun;203(2):348-51. doi: 10.1016/0003-2697(92)90323-y. [PubMed:1416032 ]
- Lennard MS, Iyun AO, Jackson PR, Tucker GT, Woods HF: Evidence for a dissociation in the control of sparteine, debrisoquine and metoprolol metabolism in Nigerians. Pharmacogenetics. 1992 Apr;2(2):89-92. doi: 10.1097/00008571-199204000-00006. [PubMed:1302046 ]
- Sindrup SH, Brosen K, Gram LF, Hallas J, Skjelbo E, Allen A, Allen GD, Cooper SM, Mellows G, Tasker TC, et al.: The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther. 1992 Mar;51(3):278-87. doi: 10.1038/clpt.1992.23. [PubMed:1531950 ]
- Schellens JH, Ghabrial H, van der Wart HH, Bakker EN, Wilkinson GR, Breimer DD: Differential effects of quinidine on the disposition of nifedipine, sparteine, and mephenytoin in humans. Clin Pharmacol Ther. 1991 Nov;50(5 Pt 1):520-8. doi: 10.1038/clpt.1991.177. [PubMed:1934865 ]
- Chaudhuri A, Keller WJ: New mammalian metabolites of sparteine. Life Sci. 1990;47(4):319-25. doi: 10.1016/0024-3205(90)90590-n. [PubMed:2388532 ]
- Schellens JH, van der Wart JH, Brugman M, Breimer DD: Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a "cocktail" study design. J Pharmacol Exp Ther. 1989 May;249(2):638-45. [PubMed:2724144 ]
- Tyndale RF, Inaba T, Kalow W: Evidence in humans for variant allozymes of the nondeficient sparteine/debrisoquine monooxygenase (P45OIID 1) in vitro. Drug Metab Dispos. 1989 May-Jun;17(3):334-40. [PubMed:2568917 ]
- Schellens JH, van der Wart HH, Hoevers JW, Breimer DD: Gas chromatographic determination of sparteine and 2- and 5-dehydrosparteine in plasma and urine. J Chromatogr. 1988 Sep 23;431(1):203-9. doi: 10.1016/s0378-4347(00)83086-8. [PubMed:3235532 ]
- Osikowska-Evers B, Dayer P, Meyer UA, Robertz GM, Eichelbaum M: Evidence for altered catalytic properties of the cytochrome P-450 involved in sparteine oxidation in poor metabolizers. Clin Pharmacol Ther. 1987 Mar;41(3):320-5. doi: 10.1038/clpt.1987.34. [PubMed:3816020 ]
- Brosen K: Sparteine oxidation polymorphism in Greenlanders living in Denmark. Br J Clin Pharmacol. 1986 Oct;22(4):415-9. doi: 10.1111/j.1365-2125.1986.tb02911.x. [PubMed:3768256 ]
- Brinn R, Brosen K, Gram LF, Haghfelt T, Otton SV: Sparteine oxidation is practically abolished in quinidine-treated patients. Br J Clin Pharmacol. 1986 Aug;22(2):194-7. doi: 10.1111/j.1365-2125.1986.tb05250.x. [PubMed:3756067 ]
- Osikowska-Evers BA, Eichelbaum M: A sensitive capillary GC assay for the determination of sparteine oxidation products in microsomal fractions of human liver. Life Sci. 1986 May 12;38(19):1775-82. doi: 10.1016/0024-3205(86)90128-1. [PubMed:3702606 ]
- Eichelbaum M, Reetz KP, Schmidt EK, Zekorn C: The genetic polymorphism of sparteine metabolism. Xenobiotica. 1986 May;16(5):465-81. doi: 10.3109/00498258609050252. [PubMed:3739368 ]
- LOTUS database [Link]
|
---|