Np mrd loader

Record Information
Version2.0
Created at2022-09-09 14:55:15 UTC
Updated at2022-09-09 14:55:15 UTC
NP-MRD IDNP0286375
Secondary Accession NumbersNone
Natural Product Identification
Common Name(4z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
DescriptionRETRORSINE, also known as usaramine, belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. (4z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione is found in Senecio brasiliensis. (4z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione was first documented in 2021 (PMID: 35024309). Based on a literature review a significant number of articles have been published on RETRORSINE (PMID: 35917946) (PMID: 35737038) (PMID: 35700647) (PMID: 35598524) (PMID: 35370657) (PMID: 34941681).
Structure
Thumb
Synonyms
ValueSource
Retrorsine hydrochlorideMeSH
Retrorsine, (15E)-isomerMeSH
UsaramineMeSH
Chemical FormulaC18H25NO6
Average Mass351.3990 Da
Monoisotopic Mass351.16819 Da
IUPAC Name(4Z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0^{14,17}]heptadec-11-ene-3,8-dione
Traditional Name(4Z)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0^{14,17}]heptadec-11-ene-3,8-dione
CAS Registry NumberNot Available
SMILES
C\C=C1\CC(C)C(O)(CO)C(=O)OCC2=CCN3CCC(OC1=O)C23
InChI Identifier
InChI=1S/C18H25NO6/c1-3-12-8-11(2)18(23,10-20)17(22)24-9-13-4-6-19-7-5-14(15(13)19)25-16(12)21/h3-4,11,14-15,20,23H,5-10H2,1-2H3/b12-3-
InChI KeyBCJMNZRQJAVDLD-BASWHVEKSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Senecio brasiliensisLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassMacrolides and analogues
Sub ClassNot Available
Direct ParentMacrolides and analogues
Alternative Parents
Substituents
  • Senecionan-skeleton
  • Macrolide
  • Alkaloid or derivatives
  • Pyrrolizine
  • Dicarboxylic acid or derivatives
  • N-alkylpyrrolidine
  • Pyrrolidine
  • Pyrroline
  • Tertiary alcohol
  • Alpha,beta-unsaturated carboxylic ester
  • Enoate ester
  • 1,2-diol
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Lactone
  • Tertiary amine
  • Tertiary aliphatic amine
  • Carboxylic acid derivative
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organic nitrogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Amine
  • Alcohol
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.6ChemAxon
pKa (Strongest Acidic)11.44ChemAxon
pKa (Strongest Basic)7.14ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area96.3 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity90.95 m³·mol⁻¹ChemAxon
Polarizability36.52 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00002109
Chemspider ID4509313
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5352411
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Li W, Cheng T, Jiang T, Zhou M, Gong B, Zhao G, Li J, Tan R, Yang X, Joshi K, Peng Y, Cheng M, Liu T, Wang DO, Zheng J: Hepatic RNA adduction derived from metabolic activation of retrorsine in vitro and in vivo. Chem Biol Interact. 2022 Sep 25;365:110047. doi: 10.1016/j.cbi.2022.110047. Epub 2022 Jul 30. [PubMed:35917946 ]
  2. Zhu L, Xue J, He Y, Xia Q, Fu PP, Lin G: Correlation Investigation between Pyrrole-DNA and Pyrrole-Protein Adducts in Male ICR Mice Exposed to Retrorsine, a Hepatotoxic Pyrrolizidine Alkaloid. Toxins (Basel). 2022 May 28;14(6):377. doi: 10.3390/toxins14060377. [PubMed:35737038 ]
  3. Xiao Y, Yi H, Wang G, Chen S, Li X, Wu Q, Zhang S, Deng K, He Y, Yang X: Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta. 2022 Nov 1;249:123645. doi: 10.1016/j.talanta.2022.123645. Epub 2022 Jun 1. [PubMed:35700647 ]
  4. Wang Z, Ma J, He Y, Miu KK, Yao S, Tang C, Ye Y, Lin G: Nrf2-mediated liver protection by 18beta-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3beta pathway. Phytomedicine. 2022 Jul 20;102:154162. doi: 10.1016/j.phymed.2022.154162. Epub 2022 May 13. [PubMed:35598524 ]
  5. Wang Z, Ma J, Yao S, He Y, Miu KK, Xia Q, Fu PP, Ye Y, Lin G: Liquorice Extract and 18beta-Glycyrrhetinic Acid Protect Against Experimental Pyrrolizidine Alkaloid-Induced Hepatotoxicity in Rats Through Inhibiting Cytochrome P450-Mediated Metabolic Activation. Front Pharmacol. 2022 Mar 16;13:850859. doi: 10.3389/fphar.2022.850859. eCollection 2022. [PubMed:35370657 ]
  6. He Y, Ma J, Fan X, Ding L, Ding X, Zhang QY, Lin G: The key role of gut-liver axis in pyrrolizidine alkaloid-induced hepatotoxicity and enterotoxicity. Acta Pharm Sin B. 2021 Dec;11(12):3820-3835. doi: 10.1016/j.apsb.2021.07.013. Epub 2021 Jul 21. [PubMed:35024309 ]
  7. Pearson AJ, Nicolas JEF, Lancaster JE, Symes CW: Characterization and Lifetime Dietary Risk Assessment of Eighteen Pyrrolizidine Alkaloids and Pyrrolizidine Alkaloid N-Oxides in New Zealand Honey. Toxins (Basel). 2021 Nov 26;13(12):843. doi: 10.3390/toxins13120843. [PubMed:34941681 ]
  8. Naito Y, Yoshinouchi Y, Sorayama Y, Kohara H, Kitano S, Irie S, Matsusaki M: Constructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment. Acta Biomater. 2022 Mar 1;140:275-288. doi: 10.1016/j.actbio.2021.11.027. Epub 2021 Nov 24. [PubMed:34826641 ]
  9. Enge AM, Kaltner F, Gottschalk C, Kin A, Kirstgen M, Geyer J, These A, Hammer H, Potz O, Braeuning A, Hessel-Pras S: Organic Cation Transporter I and Na(+) /taurocholate Co-Transporting Polypeptide are Involved in Retrorsine- and Senecionine-Induced Hepatotoxicity in HepaRG cells. Mol Nutr Food Res. 2022 Jan;66(2):e2100800. doi: 10.1002/mnfr.202100800. Epub 2021 Dec 11. [PubMed:34826203 ]
  10. Ma J, Zhang C, He Y, Chen X, Lin G: Fasting augments pyrrolizidine alkaloid-induced hepatotoxicity. Arch Toxicol. 2022 Feb;96(2):639-651. doi: 10.1007/s00204-021-03193-y. Epub 2021 Nov 18. [PubMed:34792613 ]
  11. Li J, Zhou M, Lai X, Wang Y, Zou Y, Li K, Li W, Zheng J: Toxicokinetic and bioavailability studies on retrorsine in mice, and ketoconazole-induced alteration in toxicokinetic properties. Biomed Chromatogr. 2022 Feb;36(2):e5270. doi: 10.1002/bmc.5270. Epub 2021 Nov 22. [PubMed:34727371 ]
  12. Snyman T, Crowther NJ: The Detection of Toxic Compounds in Extracts of Callilepis laureola (Oxeye Daisy) and Senecio latifolius (Ragwort) by Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS). Methods Mol Biol. 2022;2343:381-393. doi: 10.1007/978-1-0716-1558-4_28. [PubMed:34473339 ]
  13. Zhu L, Zhang C, Zhang W, Xia Q, Ma J, He X, He Y, Fu PP, Jia W, Zhuge Y, Lin G: Developing urinary pyrrole-amino acid adducts as non-invasive biomarkers for identifying pyrrolizidine alkaloids-induced liver injury in human. Arch Toxicol. 2021 Oct;95(10):3191-3204. doi: 10.1007/s00204-021-03129-6. Epub 2021 Aug 14. [PubMed:34390356 ]
  14. Zhang L, Ge JY, Zheng YW, Sun Z, Wang C, Peng Z, Wu B, Fang M, Furuya K, Ma X, Shao Y, Ohkohchi N, Oda T, Fan J, Pan G, Li D, Hui L: Survival-Assured Liver Injury Preconditioning (SALIC) Enables Robust Expansion of Human Hepatocytes in Fah(-/-) Rag2(-/-) IL2rg(-/-) Rats. Adv Sci (Weinh). 2021 Oct;8(19):e2101188. doi: 10.1002/advs.202101188. Epub 2021 Aug 11. [PubMed:34382351 ]
  15. Guo L, Zhang L, Xu H, Yu P, Wang Z, Lu D, Chen M, Wu B: Diurnal hepatic CYP3A11 contributes to chronotoxicity of the pyrrolizidine alkaloid retrorsine in mice. Xenobiotica. 2021 Sep;51(9):1019-1028. doi: 10.1080/00498254.2021.1950867. Epub 2021 Jul 26. [PubMed:34311664 ]
  16. LOTUS database [Link]