| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-09 06:16:58 UTC |
|---|
| Updated at | 2022-09-09 06:16:58 UTC |
|---|
| NP-MRD ID | NP0280470 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 2,4-dihydroxy-3,6-bis(2-methylpropyl)-5-oxopyrazin-1-ium-1-olate |
|---|
| Description | Pulcherriminic acid, also known as pulcherriminate, belongs to the class of organic compounds known as pyrazinium compounds. These are organic aromatic compounds containing a pyriazinium ring. 2,4-dihydroxy-3,6-bis(2-methylpropyl)-5-oxopyrazin-1-ium-1-olate is found in Metschnikowia pulcherrima. 2,4-dihydroxy-3,6-bis(2-methylpropyl)-5-oxopyrazin-1-ium-1-olate was first documented in 2020 (PMID: 33260656). Based on a literature review a small amount of articles have been published on Pulcherriminic acid (PMID: 34579848) (PMID: 34517294) (PMID: 32780266). |
|---|
| Structure | CC(C)CC1=C(O)[N+]([O-])=C(CC(C)C)C(=O)N1O InChI=1S/C12H20N2O4/c1-7(2)5-9-11(15)14(18)10(6-8(3)4)12(16)13(9)17/h7-8,15,17H,5-6H2,1-4H3 |
|---|
| Synonyms | | Value | Source |
|---|
| Pulcherriminate | Generator | | 2,5-Diisobutyl-3,6-dihydroxy-pyrazine-1,4-dioxide | MeSH |
|
|---|
| Chemical Formula | C12H20N2O4 |
|---|
| Average Mass | 256.3020 Da |
|---|
| Monoisotopic Mass | 256.14231 Da |
|---|
| IUPAC Name | 4,6-dihydroxy-2,5-bis(2-methylpropyl)-3-oxo-3,4-dihydropyrazin-1-ium-1-olate |
|---|
| Traditional Name | 2,4-dihydroxy-3,6-bis(2-methylpropyl)-5-oxopyrazin-1-ium-1-olate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)CC1=C(O)[N+]([O-])=C(CC(C)C)C(=O)N1O |
|---|
| InChI Identifier | InChI=1S/C12H20N2O4/c1-7(2)5-9-11(15)14(18)10(6-8(3)4)12(16)13(9)17/h7-8,15,17H,5-6H2,1-4H3 |
|---|
| InChI Key | BUHPPQFOKKRDPX-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as pyrazinium compounds. These are organic aromatic compounds containing a pyriazinium ring. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Diazines |
|---|
| Sub Class | Pyrazinium compounds |
|---|
| Direct Parent | Pyrazinium compounds |
|---|
| Alternative Parents | |
|---|
| Substituents | - Pyrazinium
- Pyrazine
- Heteroaromatic compound
- Lactam
- Azacycle
- Organic nitrogen compound
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organic salt
- Organic zwitterion
- Organooxygen compound
- Organonitrogen compound
- Aromatic heteromonocyclic compound
|
|---|
| Molecular Framework | Aromatic heteromonocyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Wang S, Zhang H, Qi T, Deng L, Yi L, Zeng K: Influence of arginine on the biocontrol efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit. Food Microbiol. 2022 Feb;101:103888. doi: 10.1016/j.fm.2021.103888. Epub 2021 Aug 26. [PubMed:34579848 ]
- Wang S, Zhang H, Ruan C, Yi L, Deng L, Zeng K: Metschnikowia citriensis FL01 antagonize Geotrichum citri-aurantii in citrus fruit through key action of iron depletion. Int J Food Microbiol. 2021 Nov 2;357:109384. doi: 10.1016/j.ijfoodmicro.2021.109384. Epub 2021 Sep 7. [PubMed:34517294 ]
- Yuan S, Yong X, Zhao T, Li Y, Liu J: Research Progress of the Biosynthesis of Natural Bio-Antibacterial Agent Pulcherriminic Acid in Bacillus. Molecules. 2020 Nov 28;25(23):5611. doi: 10.3390/molecules25235611. [PubMed:33260656 ]
- Melvydas V, Svediene J, Skridlaite G, Vaiciuniene J, Garjonyte R: In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways. Braz J Microbiol. 2020 Dec;51(4):1953-1964. doi: 10.1007/s42770-020-00357-3. Epub 2020 Aug 11. [PubMed:32780266 ]
- LOTUS database [Link]
|
|---|