| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-09 00:46:59 UTC |
|---|
| Updated at | 2022-09-09 00:46:59 UTC |
|---|
| NP-MRD ID | NP0276574 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 1,8-dihydroxy-3-(hydroxymethyl)-10-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-10h-anthracen-9-one |
|---|
| Description | Aloin belongs to the class of organic compounds known as anthracenes. These are organic compounds containing a system of three linearly fused benzene rings. 1,8-dihydroxy-3-(hydroxymethyl)-10-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-10h-anthracen-9-one is found in Aloe arborescens, Aloe excelsa and Aloe vera. 1,8-dihydroxy-3-(hydroxymethyl)-10-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-10h-anthracen-9-one was first documented in 2022 (PMID: 35185568). Based on a literature review a significant number of articles have been published on aloin (PMID: 35975594) (PMID: 35739955) (PMID: 35890383) (PMID: 35408722) (PMID: 35335294) (PMID: 36076485). |
|---|
| Structure | OC[C@H]1O[C@H]([C@H](O)[C@H](O)[C@@H]1O)C1C2=CC=CC(O)=C2C(=O)C2=C(O)C=C(CO)C=C12 InChI=1S/C21H22O9/c22-6-8-4-10-14(21-20(29)19(28)17(26)13(7-23)30-21)9-2-1-3-11(24)15(9)18(27)16(10)12(25)5-8/h1-5,13-14,17,19-26,28-29H,6-7H2/t13-,14?,17-,19-,20-,21+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| Aloin b | MeSH | | Alloin | MeSH | | Aloin a | MeSH |
|
|---|
| Chemical Formula | C21H22O9 |
|---|
| Average Mass | 418.3980 Da |
|---|
| Monoisotopic Mass | 418.12638 Da |
|---|
| IUPAC Name | 1,8-dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9,10-dihydroanthracen-9-one |
|---|
| Traditional Name | 1,8-dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-10H-anthracen-9-one |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | OC[C@H]1O[C@H]([C@H](O)[C@H](O)[C@@H]1O)C1C2=CC=CC(O)=C2C(=O)C2=C(O)C=C(CO)C=C12 |
|---|
| InChI Identifier | InChI=1S/C21H22O9/c22-6-8-4-10-14(21-20(29)19(28)17(26)13(7-23)30-21)9-2-1-3-11(24)15(9)18(27)16(10)12(25)5-8/h1-5,13-14,17,19-26,28-29H,6-7H2/t13-,14?,17-,19-,20-,21+/m1/s1 |
|---|
| InChI Key | AFHJQYHRLPMKHU-NQDHUJCSSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as anthracenes. These are organic compounds containing a system of three linearly fused benzene rings. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Benzenoids |
|---|
| Class | Anthracenes |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Anthracenes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Anthracene
- Hexose monosaccharide
- Glycosyl compound
- C-glycosyl compound
- Aryl ketone
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Oxane
- Monosaccharide
- Vinylogous acid
- Secondary alcohol
- Ketone
- Oxacycle
- Organoheterocyclic compound
- Polyol
- Ether
- Dialkyl ether
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Aromatic alcohol
- Primary alcohol
- Organooxygen compound
- Alcohol
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Zhang Z, Xie Z, Lv S, Shi Y, Zhai C, Li X, Qiao B, Gao X: Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Kangfuxiaoyan Suppository for Treating Chronic Pelvic Inflammatory Disease. Front Pharmacol. 2022 Feb 4;13:812587. doi: 10.3389/fphar.2022.812587. eCollection 2022. [PubMed:35185568 ]
- Kong XY, Chen TT, Zhang HW, Jia HM, Yu M, Zou ZM: Characterization of the metabolism of aloin A/B and aloesin in rats using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr. 2022 Dec;36(12):e5483. doi: 10.1002/bmc.5483. Epub 2022 Sep 9. [PubMed:35975594 ]
- Solaberrieta I, Jimenez A, Garrigos MC: Valorization of Aloe vera Skin By-Products to Obtain Bioactive Compounds by Microwave-Assisted Extraction: Antioxidant Activity and Chemical Composition. Antioxidants (Basel). 2022 May 26;11(6):1058. doi: 10.3390/antiox11061058. [PubMed:35739955 ]
- Pawlowicz K, Paczkowska-Walendowska M, Osmalek T, Cielecka-Piontek J: Towards the Preparation of a Hydrogel from Lyophilisates of the Aloe arborescens Aqueous Extract. Pharmaceutics. 2022 Jul 18;14(7):1489. doi: 10.3390/pharmaceutics14071489. [PubMed:35890383 ]
- Pawlowicz K, Sip S, Plech T, Kapron B, Kobus-Cisowska J, Cielecka-Piontek J: Aloe arborescens: In Vitro Screening of Genotoxicity, Effective Inhibition of Enzyme Characteristics for Disease Etiology, and Microbiological Activity. Molecules. 2022 Apr 3;27(7):2323. doi: 10.3390/molecules27072323. [PubMed:35408722 ]
- Loschi F, Faggian M, Sut S, Ferrarese I, Maccari E, Peron G, Dall'Acqua S: Development of an LC-DAD-MS-Based Method for the Analysis of Hydroxyanthracene Derivatives in Food Supplements and Plant Materials. Molecules. 2022 Mar 16;27(6):1932. doi: 10.3390/molecules27061932. [PubMed:35335294 ]
- Yang Y, Wu JJ, Xia J, Wan Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C: Can aloin develop to medicines or healthcare products? Biomed Pharmacother. 2022 Sep;153:113421. doi: 10.1016/j.biopha.2022.113421. Epub 2022 Aug 6. [PubMed:36076485 ]
- Jiang H, Shi GF, Fang YX, Liu YQ, Wang Q, Zheng X, Zhang DJ, Zhang J, Yin ZQ: Aloin A prevents ulcerative colitis in mice by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Phytomedicine. 2022 Nov;106:154403. doi: 10.1016/j.phymed.2022.154403. Epub 2022 Aug 19. [PubMed:36075180 ]
- Xiao D, Wang J, Zhong Y, Sun H, Wang M, Wang X, Ding Y, Li Y, Wang Y: Study on HPLC Fingerprint, Network Pharmacology, and Antifungal Activity of Rumex japonicus Houtt. J AOAC Int. 2022 Oct 26;105(6):1741-1754. doi: 10.1093/jaoacint/qsac079. [PubMed:35876857 ]
- Berti FV, Porto LM: Building Mathematical Models for Vascular Growth and Inhibition. Methods Mol Biol. 2022;2514:163-176. doi: 10.1007/978-1-0716-2403-6_16. [PubMed:35771428 ]
- Gao J, Yang S, Xie G, Pan J, Zhu F: Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Aloin Against Gastric Cancer. Drug Des Devel Ther. 2022 Jun 20;16:1947-1961. doi: 10.2147/DDDT.S360790. eCollection 2022. [PubMed:35757520 ]
- Sadiq U, Gill H, Chandrapala J: Temperature and pH Stability of Anthraquinones from Native Aloe vera Gel, Spray-Dried and Freeze-Dried Aloe vera Powders during Storage. Foods. 2022 May 30;11(11):1613. doi: 10.3390/foods11111613. [PubMed:35681363 ]
- Sharma R, Burang G, Kumar S, Sharma YP, Kumar V: Optimization of apricot (Prunus armeniaca L.) blended Aloe vera (Aloe barbadensis M.) based low-calorie beverage functionally enriched with aonla juice (Phyllanthus emblica L.). J Food Sci Technol. 2022 May;59(5):2013-2024. doi: 10.1007/s13197-021-05216-z. Epub 2021 Aug 1. [PubMed:35531412 ]
- Cuvas-Limon RB, Ferreira-Santos P, Cruz M, Teixeira JA, Belmares R, Nobre C: Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis. Molecules. 2022 Apr 12;27(8):2473. doi: 10.3390/molecules27082473. [PubMed:35458671 ]
- Meena VK, Kumar V, Karalia S, Dangi RS, Sundd M: Structural and mechanistic insights into modulation of alpha-Synuclein fibril formation by aloin and emodin. Biochim Biophys Acta Gen Subj. 2022 Jul;1866(7):130151. doi: 10.1016/j.bbagen.2022.130151. Epub 2022 Apr 11. [PubMed:35421539 ]
- Lopez Z, Salazar Zuniga MN, Femenia A, Acevedo-Hernandez GJ, Godinez Flores JA, Cano ME, Knauth P: Dry but Not Humid Thermal Processing of Aloe vera Gel Promotes Cytotoxicity on Human Intestinal Cells HT-29. Foods. 2022 Mar 3;11(5):745. doi: 10.3390/foods11050745. [PubMed:35267378 ]
- Lewis DSM, Ho J, Wills S, Kawall A, Sharma A, Chavada K, Ebert MCCJC, Evoli S, Singh A, Rayalam S, Mody V, Taval S: Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep. 2022 Feb 9;12(1):2145. doi: 10.1038/s41598-022-06104-y. [PubMed:35140265 ]
- Jangra A, Sharma G, Sihag S, Chhokar V: The dark side of miracle plant-Aloe vera: a review. Mol Biol Rep. 2022 Jun;49(6):5029-5040. doi: 10.1007/s11033-022-07176-9. Epub 2022 Jan 29. [PubMed:35092563 ]
- Westermann M, Adomako-Bonsu AG, Thiele S, Cicek SS, Martin HJ, Maser E: Inhibition of human carbonyl reducing enzymes by plant anthrone and anthraquinone derivatives. Chem Biol Interact. 2022 Feb 25;354:109823. doi: 10.1016/j.cbi.2022.109823. Epub 2022 Jan 21. [PubMed:35065925 ]
- LOTUS database [Link]
|
|---|