| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-08 14:05:51 UTC |
|---|
| Updated at | 2022-09-08 14:05:51 UTC |
|---|
| NP-MRD ID | NP0268846 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (3s,22s)-10,11,15,16,27-pentamethoxy-4,21-dimethyl-13,29-dioxa-4,21-diazaheptacyclo[28.2.2.1¹⁴,¹⁸.1²⁴,²⁸.0³,⁸.0⁷,¹².0²²,³⁶]hexatriaconta-1(32),7(12),8,10,14,16,18(36),24,26,28(35),30,33-dodecaen-17-ol |
|---|
| Description | 5-Hydroxythalidasine belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. (3s,22s)-10,11,15,16,27-pentamethoxy-4,21-dimethyl-13,29-dioxa-4,21-diazaheptacyclo[28.2.2.1¹⁴,¹⁸.1²⁴,²⁸.0³,⁸.0⁷,¹².0²²,³⁶]hexatriaconta-1(32),7(12),8,10,14,16,18(36),24,26,28(35),30,33-dodecaen-17-ol is found in Thalictrum cultratum. Based on a literature review very few articles have been published on 5-Hydroxythalidasine. |
|---|
| Structure | COC1=CC=C2C[C@@H]3N(C)CCC4=C3C(OC3=C5CCN(C)[C@@H](CC6=CC=C(OC1=C2)C=C6)C5=CC(OC)=C3OC)=C(OC)C(OC)=C4O InChI=1S/C39H44N2O8/c1-40-16-14-25-27-21-32(44-4)36(45-5)35(25)49-37-33-26(34(42)38(46-6)39(37)47-7)15-17-41(2)29(33)19-23-10-13-30(43-3)31(20-23)48-24-11-8-22(9-12-24)18-28(27)40/h8-13,20-21,28-29,42H,14-19H2,1-7H3/t28-,29-/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C39H44N2O8 |
|---|
| Average Mass | 668.7870 Da |
|---|
| Monoisotopic Mass | 668.30977 Da |
|---|
| IUPAC Name | (3S,22S)-10,11,15,16,27-pentamethoxy-4,21-dimethyl-13,29-dioxa-4,21-diazaheptacyclo[28.2.2.1^{14,18}.1^{24,28}.0^{3,8}.0^{7,12}.0^{22,36}]hexatriaconta-1(32),7(12),8,10,14,16,18(36),24,26,28(35),30,33-dodecaen-17-ol |
|---|
| Traditional Name | (3S,22S)-10,11,15,16,27-pentamethoxy-4,21-dimethyl-13,29-dioxa-4,21-diazaheptacyclo[28.2.2.1^{14,18}.1^{24,28}.0^{3,8}.0^{7,12}.0^{22,36}]hexatriaconta-1(32),7(12),8,10,14,16,18(36),24,26,28(35),30,33-dodecaen-17-ol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC=C2C[C@@H]3N(C)CCC4=C3C(OC3=C5CCN(C)[C@@H](CC6=CC=C(OC1=C2)C=C6)C5=CC(OC)=C3OC)=C(OC)C(OC)=C4O |
|---|
| InChI Identifier | InChI=1S/C39H44N2O8/c1-40-16-14-25-27-21-32(44-4)36(45-5)35(25)49-37-33-26(34(42)38(46-6)39(37)47-7)15-17-41(2)29(33)19-23-10-13-30(43-3)31(20-23)48-24-11-8-22(9-12-24)18-28(27)40/h8-13,20-21,28-29,42H,14-19H2,1-7H3/t28-,29-/m0/s1 |
|---|
| InChI Key | XKFRUFRRLXHUFK-VMPREFPWSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lignans, neolignans and related compounds |
|---|
| Class | Not Available |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Lignans, neolignans and related compounds |
|---|
| Alternative Parents | |
|---|
| Substituents | - Oxyneolignan skeleton
- Diaryl ether
- Tetrahydroisoquinoline
- Anisole
- Alkyl aryl ether
- Aralkylamine
- Benzenoid
- Tertiary amine
- Tertiary aliphatic amine
- Ether
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organic nitrogen compound
- Organopnictogen compound
- Organooxygen compound
- Amine
- Organic oxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|