Np mrd loader

Record Information
Version2.0
Created at2022-09-08 03:30:01 UTC
Updated at2022-09-08 03:30:01 UTC
NP-MRD IDNP0261134
Secondary Accession NumbersNone
Natural Product Identification
Common Namedeoxynivalenol
DescriptionDeoxynivalenol, also known as DON or vomitoxin, belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain. deoxynivalenol is found in Fusarium culmorum and Fusarium graminearum. deoxynivalenol was first documented in 2022 (PMID: 36079840). Based on a literature review a significant number of articles have been published on deoxynivalenol (PMID: 36075166) (PMID: 36101347) (PMID: 36087620) (PMID: 36084588) (PMID: 36084140) (PMID: 36065198).
Structure
Thumb
Synonyms
ValueSource
3alpha,7alpha,15-Trihydroxy-12,13-epoxytrichothec-9-en-8-oneChEBI
4-DeoxynivalenolChEBI
4-DesoxynivalenolChEBI
DehydronivalenolChEBI
DesoxynivalenolChEBI
DONChEBI
VomitoxinChEBI
3a,7a,15-Trihydroxy-12,13-epoxytrichothec-9-en-8-oneGenerator
3Α,7α,15-trihydroxy-12,13-epoxytrichothec-9-en-8-oneGenerator
3-Epi-deoxynivalenolMeSH
3-Epi-DONMeSH
Chemical FormulaC15H20O6
Average Mass296.3190 Da
Monoisotopic Mass296.12599 Da
IUPAC NameNot Available
Traditional NameNot Available
CAS Registry NumberNot Available
SMILES
CC1=C[C@H]2O[C@@H]3[C@H](O)C[C@@](C)([C@]33CO3)[C@@]2(CO)[C@H](O)C1=O
InChI Identifier
InChI=1S/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1
InChI KeyLINOMUASTDIRTM-QGRHZQQGSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Fusarium culmorumLOTUS Database
Fusarium graminearumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentTrichothecenes
Alternative Parents
Substituents
  • Trichothecene skeleton
  • Cyclohexenone
  • Oxepane
  • Oxane
  • Cyclic alcohol
  • Ketone
  • Secondary alcohol
  • Cyclic ketone
  • Dialkyl ether
  • Oxirane
  • Ether
  • Oxacycle
  • Organoheterocyclic compound
  • Organic oxide
  • Carbonyl group
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Primary alcohol
  • Alcohol
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00003201
Chemspider ID36584
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkVomitoxin
METLIN IDNot Available
PubChem Compound40024
PDB IDNot Available
ChEBI ID10022
Good Scents IDrw1680861
References
General References
  1. Claeys L, De Saeger S, Scelo G, Biessy C, Casagrande C, Nicolas G, Korenjak M, Fervers B, Heath AK, Krogh V, Lujan-Barroso L, Castilla J, Ljungberg B, Rodriguez-Barranco M, Ericson U, Santiuste C, Catalano A, Overvad K, Brustad M, Gunter MJ, Zavadil J, De Boevre M, Huybrechts I: Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients. 2022 Aug 30;14(17). pii: nu14173581. doi: 10.3390/nu14173581. [PubMed:36079840 ]
  2. Keskin E, Eyupoglu OE: Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chem. 2023 Jan 30;400:134086. doi: 10.1016/j.foodchem.2022.134086. Epub 2022 Sep 5. [PubMed:36075166 ]
  3. Bartkiene E, Starkute V, Zokaityte E, Klupsaite D, Mockus E, Bartkevics V, Borisova A, Gruzauskas R, Liatukas Z, Ruzgas V: Comparison Study of Nontreated and Fermented Wheat Varieties 'Ada', 'Sarta', and New Breed Blue and Purple Wheat Lines Wholemeal Flour. Biology (Basel). 2022 Jun 27;11(7):966. doi: 10.3390/biology11070966. [PubMed:36101347 ]
  4. Cimbalo A, Frangiamone M, Font G, Manyes L: The importance of transcriptomics and proteomics for studying molecular mechanisms of mycotoxin exposure: A review. Food Chem Toxicol. 2022 Nov;169:113396. doi: 10.1016/j.fct.2022.113396. Epub 2022 Sep 7. [PubMed:36087620 ]
  5. Jiang H, Zhong S, Schwarz P, Chen B, Rao J: Antifungal activity, mycotoxin inhibitory efficacy, and mode of action of hop essential oil nanoemulsion against Fusarium graminearum. Food Chem. 2023 Jan 30;400:134016. doi: 10.1016/j.foodchem.2022.134016. Epub 2022 Aug 27. [PubMed:36084588 ]
  6. Tian F, Woo SY, Lee SY, Park SB, Im JH, Chun HS: Mycotoxins in soybean-based foods fermented with filamentous fungi: Occurrence and preventive strategies. Compr Rev Food Sci Food Saf. 2022 Nov;21(6):5131-5152. doi: 10.1111/1541-4337.13032. Epub 2022 Sep 9. [PubMed:36084140 ]
  7. Zhang S, Liu S, Shen L, Chen S, He L, Liu A: Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Curr Res Food Sci. 2022 Aug 23;5:1305-1312. doi: 10.1016/j.crfs.2022.08.006. eCollection 2022. [PubMed:36065198 ]
  8. LOTUS database [Link]