| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-08 03:30:01 UTC |
|---|
| Updated at | 2022-09-08 03:30:01 UTC |
|---|
| NP-MRD ID | NP0261134 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | deoxynivalenol |
|---|
| Description | Deoxynivalenol, also known as DON or vomitoxin, belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain. deoxynivalenol is found in Fusarium culmorum and Fusarium graminearum. deoxynivalenol was first documented in 2022 (PMID: 36079840). Based on a literature review a significant number of articles have been published on deoxynivalenol (PMID: 36075166) (PMID: 36101347) (PMID: 36087620) (PMID: 36084588) (PMID: 36084140) (PMID: 36065198). |
|---|
| Structure | CC1=C[C@H]2O[C@@H]3[C@H](O)C[C@@](C)([C@]33CO3)[C@@]2(CO)[C@H](O)C1=O InChI=1S/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| 3alpha,7alpha,15-Trihydroxy-12,13-epoxytrichothec-9-en-8-one | ChEBI | | 4-Deoxynivalenol | ChEBI | | 4-Desoxynivalenol | ChEBI | | Dehydronivalenol | ChEBI | | Desoxynivalenol | ChEBI | | DON | ChEBI | | Vomitoxin | ChEBI | | 3a,7a,15-Trihydroxy-12,13-epoxytrichothec-9-en-8-one | Generator | | 3Α,7α,15-trihydroxy-12,13-epoxytrichothec-9-en-8-one | Generator | | 3-Epi-deoxynivalenol | MeSH | | 3-Epi-DON | MeSH |
|
|---|
| Chemical Formula | C15H20O6 |
|---|
| Average Mass | 296.3190 Da |
|---|
| Monoisotopic Mass | 296.12599 Da |
|---|
| IUPAC Name | Not Available |
|---|
| Traditional Name | Not Available |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1=C[C@H]2O[C@@H]3[C@H](O)C[C@@](C)([C@]33CO3)[C@@]2(CO)[C@H](O)C1=O |
|---|
| InChI Identifier | InChI=1S/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1 |
|---|
| InChI Key | LINOMUASTDIRTM-QGRHZQQGSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as trichothecenes. These are sesquiterpene mycotoxins structurally characterized by the presence of an epoxide ring and a benzopyran derivative with a variant number of hydroxyl, acetyl, or other substituents. The most important structural features causing the biological activities of trichothecenes are the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | Trichothecenes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Trichothecene skeleton
- Cyclohexenone
- Oxepane
- Oxane
- Cyclic alcohol
- Ketone
- Secondary alcohol
- Cyclic ketone
- Dialkyl ether
- Oxirane
- Ether
- Oxacycle
- Organoheterocyclic compound
- Organic oxide
- Carbonyl group
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxygen compound
- Primary alcohol
- Alcohol
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Claeys L, De Saeger S, Scelo G, Biessy C, Casagrande C, Nicolas G, Korenjak M, Fervers B, Heath AK, Krogh V, Lujan-Barroso L, Castilla J, Ljungberg B, Rodriguez-Barranco M, Ericson U, Santiuste C, Catalano A, Overvad K, Brustad M, Gunter MJ, Zavadil J, De Boevre M, Huybrechts I: Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients. 2022 Aug 30;14(17). pii: nu14173581. doi: 10.3390/nu14173581. [PubMed:36079840 ]
- Keskin E, Eyupoglu OE: Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chem. 2023 Jan 30;400:134086. doi: 10.1016/j.foodchem.2022.134086. Epub 2022 Sep 5. [PubMed:36075166 ]
- Bartkiene E, Starkute V, Zokaityte E, Klupsaite D, Mockus E, Bartkevics V, Borisova A, Gruzauskas R, Liatukas Z, Ruzgas V: Comparison Study of Nontreated and Fermented Wheat Varieties 'Ada', 'Sarta', and New Breed Blue and Purple Wheat Lines Wholemeal Flour. Biology (Basel). 2022 Jun 27;11(7):966. doi: 10.3390/biology11070966. [PubMed:36101347 ]
- Cimbalo A, Frangiamone M, Font G, Manyes L: The importance of transcriptomics and proteomics for studying molecular mechanisms of mycotoxin exposure: A review. Food Chem Toxicol. 2022 Nov;169:113396. doi: 10.1016/j.fct.2022.113396. Epub 2022 Sep 7. [PubMed:36087620 ]
- Jiang H, Zhong S, Schwarz P, Chen B, Rao J: Antifungal activity, mycotoxin inhibitory efficacy, and mode of action of hop essential oil nanoemulsion against Fusarium graminearum. Food Chem. 2023 Jan 30;400:134016. doi: 10.1016/j.foodchem.2022.134016. Epub 2022 Aug 27. [PubMed:36084588 ]
- Tian F, Woo SY, Lee SY, Park SB, Im JH, Chun HS: Mycotoxins in soybean-based foods fermented with filamentous fungi: Occurrence and preventive strategies. Compr Rev Food Sci Food Saf. 2022 Nov;21(6):5131-5152. doi: 10.1111/1541-4337.13032. Epub 2022 Sep 9. [PubMed:36084140 ]
- Zhang S, Liu S, Shen L, Chen S, He L, Liu A: Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Curr Res Food Sci. 2022 Aug 23;5:1305-1312. doi: 10.1016/j.crfs.2022.08.006. eCollection 2022. [PubMed:36065198 ]
- LOTUS database [Link]
|
|---|