| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-07 18:08:39 UTC |
|---|
| Updated at | 2022-09-07 18:08:40 UTC |
|---|
| NP-MRD ID | NP0254088 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1r,2s,19s,20s,21s)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁵,³⁰.0³¹,³⁶]nonatriaconta-5,7,9,11(16),12,14,25(30),26,28,31,33,35-dodecaene-4,17,24,37-tetrone |
|---|
| Description | (1R,2S,19S,20S,21S)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁵,³⁰.0³¹,³⁶]Nonatriaconta-5,7,9,11,13,15,25,27,29,31,33,35-dodecaene-4,17,24,37-tetrone belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. (1r,2s,19s,20s,21s)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁵,³⁰.0³¹,³⁶]nonatriaconta-5,7,9,11(16),12,14,25(30),26,28,31,33,35-dodecaene-4,17,24,37-tetrone is found in Eucalyptus delegatensis. Based on a literature review very few articles have been published on (1R,2S,19S,20S,21S)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁵,³⁰.0³¹,³⁶]Nonatriaconta-5,7,9,11,13,15,25,27,29,31,33,35-dodecaene-4,17,24,37-tetrone. |
|---|
| Structure | O[C@H]1[C@@H]2COC(=O)C3=C(C(O)=C(O)C(O)=C3)C3=C(O)C(O)=C(O)C=C3C(=O)O[C@@H](O2)[C@H]2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(C=C(O)C(O)=C3O)C(=O)O[C@@H]12 InChI=1S/C34H24O22/c35-10-1-6-15(24(44)19(10)39)18-9(4-13(38)22(42)27(18)47)33(51)56-34-29-28(23(43)14(53-34)5-52-30(6)48)54-31(49)7-2-11(36)20(40)25(45)16(7)17-8(32(50)55-29)3-12(37)21(41)26(17)46/h1-4,14,23,28-29,34-47H,5H2/t14-,23-,28-,29-,34+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C34H24O22 |
|---|
| Average Mass | 784.5440 Da |
|---|
| Monoisotopic Mass | 784.07592 Da |
|---|
| IUPAC Name | (1R,2S,19S,20S,21S)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0^{2,19}.0^{5,10}.0^{11,16}.0^{25,30}.0^{31,36}]nonatriaconta-5,7,9,11(16),12,14,25(30),26,28,31,33,35-dodecaene-4,17,24,37-tetrone |
|---|
| Traditional Name | (1R,2S,19S,20S,21S)-7,8,9,12,13,14,20,27,28,29,32,33,34-tridecahydroxy-3,18,23,38,39-pentaoxaheptacyclo[19.17.1.0^{2,19}.0^{5,10}.0^{11,16}.0^{25,30}.0^{31,36}]nonatriaconta-5,7,9,11(16),12,14,25(30),26,28,31,33,35-dodecaene-4,17,24,37-tetrone |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | O[C@H]1[C@@H]2COC(=O)C3=C(C(O)=C(O)C(O)=C3)C3=C(O)C(O)=C(O)C=C3C(=O)O[C@@H](O2)[C@H]2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(C=C(O)C(O)=C3O)C(=O)O[C@@H]12 |
|---|
| InChI Identifier | InChI=1S/C34H24O22/c35-10-1-6-15(24(44)19(10)39)18-9(4-13(38)22(42)27(18)47)33(51)56-34-29-28(23(43)14(53-34)5-52-30(6)48)54-31(49)7-2-11(36)20(40)25(45)16(7)17-8(32(50)55-29)3-12(37)21(41)26(17)46/h1-4,14,23,28-29,34-47H,5H2/t14-,23-,28-,29-,34+/m0/s1 |
|---|
| InChI Key | HVXQPVRDPFKKHP-RNVDCTPUSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Tannins |
|---|
| Sub Class | Hydrolyzable tannins |
|---|
| Direct Parent | Hydrolyzable tannins |
|---|
| Alternative Parents | |
|---|
| Substituents | - Hydrolyzable tannin
- Macrolide
- Tetracarboxylic acid or derivatives
- Gallic acid or derivatives
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Monosaccharide
- Oxane
- Benzenoid
- Secondary alcohol
- Lactone
- Carboxylic acid ester
- Polyol
- Acetal
- Carboxylic acid derivative
- Oxacycle
- Organoheterocyclic compound
- Alcohol
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|