| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-07 13:01:40 UTC |
|---|
| Updated at | 2022-09-07 13:01:40 UTC |
|---|
| NP-MRD ID | NP0250246 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | junenol |
|---|
| Description | Junenol belongs to the class of organic compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. These are sesquiterpenoids with a structure based on the eudesmane skeleton. junenol is found in Acritopappus confertus, Ageratum fastigiatum, Asarum canadense, Baccharis dracunculifolia, Hypericum perforatum, Piper kadsura, Silphium perfoliatum and Solidago canadensis. junenol was first documented in 2010 (PMID: 21299136). Based on a literature review a small amount of articles have been published on Junenol (PMID: 36008872) (PMID: 35910617) (PMID: 28278643) (PMID: 27231873). |
|---|
| Structure | CC(C)[C@@H]1CC[C@@]2(C)CCCC(=C)[C@@H]2[C@H]1O InChI=1S/C15H26O/c1-10(2)12-7-9-15(4)8-5-6-11(3)13(15)14(12)16/h10,12-14,16H,3,5-9H2,1-2,4H3/t12-,13+,14-,15+/m0/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C15H26O |
|---|
| Average Mass | 222.3720 Da |
|---|
| Monoisotopic Mass | 222.19837 Da |
|---|
| IUPAC Name | (1S,2S,4aR,8aS)-4a-methyl-8-methylidene-2-(propan-2-yl)-decahydronaphthalen-1-ol |
|---|
| Traditional Name | (1S,2S,4aR,8aS)-2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalen-1-ol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(C)[C@@H]1CC[C@@]2(C)CCCC(=C)[C@@H]2[C@H]1O |
|---|
| InChI Identifier | InChI=1S/C15H26O/c1-10(2)12-7-9-15(4)8-5-6-11(3)13(15)14(12)16/h10,12-14,16H,3,5-9H2,1-2,4H3/t12-,13+,14-,15+/m0/s1 |
|---|
| InChI Key | MSJJKJCIFIGTJY-LJISPDSOSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. These are sesquiterpenoids with a structure based on the eudesmane skeleton. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoid
- Cyclic alcohol
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Carneiro LJ, Bastos JK, Veneziani RCS, Santos MFC, Ambrosio SR: A reliable validated high-performance liquid chromatography-photodiode array detection method for quantification of terpenes in Copaifera pubiflora, Copaifera trapezifolia, and Copaifera langsdorffii oleoresins. Nat Prod Res. 2022 Aug 25:1-6. doi: 10.1080/14786419.2022.2116701. [PubMed:36008872 ]
- Getahun MN, Ngiela J, Makwatta JO, Ahuya P, Simon TK, Kamau SK, Torto B, Masiga D: Metabolites From Trypanosome-Infected Cattle as Sensitive Biomarkers for Animal Trypanosomosis. Front Microbiol. 2022 Jul 14;13:922760. doi: 10.3389/fmicb.2022.922760. eCollection 2022. [PubMed:35910617 ]
- Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M: Chemical profiling and biological properties of Neolitsea kedahense Gamble essential oils. Nat Prod Res. 2017 Dec;31(23):2793-2796. doi: 10.1080/14786419.2017.1294172. Epub 2017 Feb 24. [PubMed:28278643 ]
- Gou JB, Li ZQ, Li CF, Chen FF, Lv SY, Zhang YS: Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis. Plant Physiol Biochem. 2016 Sep;106:288-94. doi: 10.1016/j.plaphy.2016.05.023. Epub 2016 May 18. [PubMed:27231873 ]
- Judzentiene A, Budiene J, Butkiene R, Kupcinskiene E, Laffont-Schwob I, Masotti V: Caryophyllene oxide-rich essential oils of Lithuanian Artemisia campestris ssp. campestris and their toxicity. Nat Prod Commun. 2010 Dec;5(12):1981-4. [PubMed:21299136 ]
- LOTUS database [Link]
|
|---|