| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-07 11:50:15 UTC |
|---|
| Updated at | 2022-09-07 11:50:15 UTC |
|---|
| NP-MRD ID | NP0249311 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one |
|---|
| Description | Pseudopelletierine, also known as granatonine or granatan-3-one, belongs to the class of organic compounds known as piperidinones. Piperidinones are compounds containing a piperidine ring which bears a ketone. Pseudopelletierine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one is found in Apis cerana and Punica granatum. (1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one was first documented in 2012 (PMID: 22539412). Based on a literature review a small amount of articles have been published on pseudopelletierine (PMID: 25749134) (PMID: 34768818) (PMID: 28759141) (PMID: 25556473). |
|---|
| Structure | CN1[C@H]2CCC[C@@H]1CC(=O)C2 InChI=1S/C9H15NO/c1-10-7-3-2-4-8(10)6-9(11)5-7/h7-8H,2-6H2,1H3/t7-,8+ |
|---|
| Synonyms | | Value | Source |
|---|
| 9-Methyl-3-granatanone | ChEBI | | Granatan-3-one | ChEBI | | Granatonine | ChEBI | | N-Methylgranatonine | ChEBI | | Psi-pelletierine | ChEBI |
|
|---|
| Chemical Formula | C9H15NO |
|---|
| Average Mass | 153.2250 Da |
|---|
| Monoisotopic Mass | 153.11536 Da |
|---|
| IUPAC Name | (1R,5S)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one |
|---|
| Traditional Name | (1R,5S)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CN1[C@H]2CCC[C@@H]1CC(=O)C2 |
|---|
| InChI Identifier | InChI=1S/C9H15NO/c1-10-7-3-2-4-8(10)6-9(11)5-7/h7-8H,2-6H2,1H3/t7-,8+ |
|---|
| InChI Key | RHWSKVCZXBAWLZ-OCAPTIKFSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as piperidinones. Piperidinones are compounds containing a piperidine ring which bears a ketone. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Piperidines |
|---|
| Sub Class | Piperidinones |
|---|
| Direct Parent | Piperidinones |
|---|
| Alternative Parents | |
|---|
| Substituents | - Piperidinone
- Ketone
- Tertiary amine
- Tertiary aliphatic amine
- Cyclic ketone
- Azacycle
- Amine
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Carbonyl group
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Chang Q, Peng Y, Dan C, Shuai Q, Hu S: Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry. J Agric Food Chem. 2015 Mar 25;63(11):2911-8. doi: 10.1021/jf505749n. Epub 2015 Mar 12. [PubMed:25749134 ]
- Pawelski D, Walewska A, Ksiezak S, Sredzinski D, Radziwon P, Moniuszko M, Gandusekar R, Eljaszewicz A, Lazny R, Brzezinski K, Plonska-Brzezinska ME: Monocarbonyl Analogs of Curcumin Based on the Pseudopelletierine Scaffold: Synthesis and Anti-Inflammatory Activity. Int J Mol Sci. 2021 Oct 21;22(21):11384. doi: 10.3390/ijms222111384. [PubMed:34768818 ]
- Vallejo-Lopez M, Ecija P, Vogt N, Demaison J, Lesarri A, Basterretxea FJ, Cocinero EJ: N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine. Chemistry. 2017 Nov 21;23(65):16491-16496. doi: 10.1002/chem.201702232. Epub 2017 Oct 9. [PubMed:28759141 ]
- Usha T, Goyal AK, Lubna S, Prashanth H, Mohan TM, Pande V, Middha SK: Identification of anti-cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pac J Cancer Prev. 2014;15(23):10345-50. doi: 10.7314/apjcp.2014.15.23.10345. [PubMed:25556473 ]
- Pohl R, Potmischil F, Dracinsky M, Vanek V, Slavetinska L, Budesinsky M: 13C GIAO DFT calculation as a tool for configuration prediction of N-O group in saturated heterocyclic N-oxides. Magn Reson Chem. 2012 Jun;50(6):415-23. doi: 10.1002/mrc.3810. Epub 2012 Apr 27. [PubMed:22539412 ]
- LOTUS database [Link]
|
|---|