Np mrd loader

Record Information
Version2.0
Created at2022-09-07 11:50:15 UTC
Updated at2022-09-07 11:50:15 UTC
NP-MRD IDNP0249311
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one
DescriptionPseudopelletierine, also known as granatonine or granatan-3-one, belongs to the class of organic compounds known as piperidinones. Piperidinones are compounds containing a piperidine ring which bears a ketone. Pseudopelletierine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one is found in Apis cerana and Punica granatum. (1r,5s)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one was first documented in 2012 (PMID: 22539412). Based on a literature review a small amount of articles have been published on pseudopelletierine (PMID: 25749134) (PMID: 34768818) (PMID: 28759141) (PMID: 25556473).
Structure
Thumb
Synonyms
ValueSource
9-Methyl-3-granatanoneChEBI
Granatan-3-oneChEBI
GranatonineChEBI
N-MethylgranatonineChEBI
Psi-pelletierineChEBI
Chemical FormulaC9H15NO
Average Mass153.2250 Da
Monoisotopic Mass153.11536 Da
IUPAC Name(1R,5S)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one
Traditional Name(1R,5S)-9-methyl-9-azabicyclo[3.3.1]nonan-3-one
CAS Registry NumberNot Available
SMILES
CN1[C@H]2CCC[C@@H]1CC(=O)C2
InChI Identifier
InChI=1S/C9H15NO/c1-10-7-3-2-4-8(10)6-9(11)5-7/h7-8H,2-6H2,1H3/t7-,8+
InChI KeyRHWSKVCZXBAWLZ-OCAPTIKFSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Apis ceranaLOTUS Database
Punica granatumLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as piperidinones. Piperidinones are compounds containing a piperidine ring which bears a ketone.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPiperidines
Sub ClassPiperidinones
Direct ParentPiperidinones
Alternative Parents
Substituents
  • Piperidinone
  • Ketone
  • Tertiary amine
  • Tertiary aliphatic amine
  • Cyclic ketone
  • Azacycle
  • Amine
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP1.14ChemAxon
pKa (Strongest Acidic)18.05ChemAxon
pKa (Strongest Basic)7.5ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area20.31 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity43.95 m³·mol⁻¹ChemAxon
Polarizability17.1 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00002300
Chemspider ID5034811
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkPseudopelletierine
METLIN IDNot Available
PubChem Compound6602484
PDB IDNot Available
ChEBI ID8607
Good Scents IDrw1699141
References
General References
  1. Chang Q, Peng Y, Dan C, Shuai Q, Hu S: Rapid in situ identification of bioactive compounds in plants by in vivo nanospray high-resolution mass spectrometry. J Agric Food Chem. 2015 Mar 25;63(11):2911-8. doi: 10.1021/jf505749n. Epub 2015 Mar 12. [PubMed:25749134 ]
  2. Pawelski D, Walewska A, Ksiezak S, Sredzinski D, Radziwon P, Moniuszko M, Gandusekar R, Eljaszewicz A, Lazny R, Brzezinski K, Plonska-Brzezinska ME: Monocarbonyl Analogs of Curcumin Based on the Pseudopelletierine Scaffold: Synthesis and Anti-Inflammatory Activity. Int J Mol Sci. 2021 Oct 21;22(21):11384. doi: 10.3390/ijms222111384. [PubMed:34768818 ]
  3. Vallejo-Lopez M, Ecija P, Vogt N, Demaison J, Lesarri A, Basterretxea FJ, Cocinero EJ: N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine. Chemistry. 2017 Nov 21;23(65):16491-16496. doi: 10.1002/chem.201702232. Epub 2017 Oct 9. [PubMed:28759141 ]
  4. Usha T, Goyal AK, Lubna S, Prashanth H, Mohan TM, Pande V, Middha SK: Identification of anti-cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pac J Cancer Prev. 2014;15(23):10345-50. doi: 10.7314/apjcp.2014.15.23.10345. [PubMed:25556473 ]
  5. Pohl R, Potmischil F, Dracinsky M, Vanek V, Slavetinska L, Budesinsky M: 13C GIAO DFT calculation as a tool for configuration prediction of N-O group in saturated heterocyclic N-oxides. Magn Reson Chem. 2012 Jun;50(6):415-23. doi: 10.1002/mrc.3810. Epub 2012 Apr 27. [PubMed:22539412 ]
  6. LOTUS database [Link]