| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-07 10:48:17 UTC |
|---|
| Updated at | 2022-09-07 10:48:17 UTC |
|---|
| NP-MRD ID | NP0248515 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 2,7,7,10-tetramethyl-3-oxatetracyclo[7.3.0.0²,⁴.0⁶,⁸]dodecane |
|---|
| Description | Isoaromadendrene epoxide belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. 2,7,7,10-tetramethyl-3-oxatetracyclo[7.3.0.0²,⁴.0⁶,⁸]dodecane is found in Artemisia carvifolia and Cyperus rotundus. 2,7,7,10-tetramethyl-3-oxatetracyclo[7.3.0.0²,⁴.0⁶,⁸]dodecane was first documented in 2007 (PMID: 17727060). Based on a literature review a small amount of articles have been published on Isoaromadendrene epoxide (PMID: 34034579) (PMID: 29103900) (PMID: 28701650) (PMID: 28284424). |
|---|
| Structure | CC1CCC2C1C1C(CC3OC23C)C1(C)C InChI=1S/C15H24O/c1-8-5-6-9-12(8)13-10(14(13,2)3)7-11-15(9,4)16-11/h8-13H,5-7H2,1-4H3 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C15H24O |
|---|
| Average Mass | 220.3560 Da |
|---|
| Monoisotopic Mass | 220.18272 Da |
|---|
| IUPAC Name | 2,7,7,10-tetramethyl-3-oxatetracyclo[7.3.0.0^{2,4}.0^{6,8}]dodecane |
|---|
| Traditional Name | 2,7,7,10-tetramethyl-3-oxatetracyclo[7.3.0.0^{2,4}.0^{6,8}]dodecane |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC1CCC2C1C1C(CC3OC23C)C1(C)C |
|---|
| InChI Identifier | InChI=1S/C15H24O/c1-8-5-6-9-12(8)13-10(14(13,2)3)7-11-15(9,4)16-11/h8-13H,5-7H2,1-4H3 |
|---|
| InChI Key | GLKQAHXBJLGAFT-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Prenol lipids |
|---|
| Sub Class | Sesquiterpenoids |
|---|
| Direct Parent | 5,10-cycloaromadendrane sesquiterpenoids |
|---|
| Alternative Parents | |
|---|
| Substituents | - 5,10-cycloaromadendrane sesquiterpenoid
- Oxacycle
- Organoheterocyclic compound
- Ether
- Oxirane
- Dialkyl ether
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Souza AO, Pereira PS, Fernandes CC, Andrade G, Pires RH, Candido ACBB, Magalhaes LG, Vieira TM, Crotti AEM, Martins CHG, Miranda MLD: Hexane extract from Spiranthera odoratissima A. St.-hil. leaves: chemical composition and its bioactive potential against Candida pathogenic species, Leishmania amazonensis and Xylella fastidiosa. Nat Prod Res. 2022 Jun;36(11):2907-2912. doi: 10.1080/14786419.2021.1931188. Epub 2021 May 25. [PubMed:34034579 ]
- Albouchi F, Sifaoui I, Reyes-Batlle M, Lopez-Arencibia A, Pinero JE, Lorenzo-Morales J, Abderrabba M: Chemical composition and anti-Acanthamoeba activity of Melaleuca styphelioides essential oil. Exp Parasitol. 2017 Dec;183:104-108. doi: 10.1016/j.exppara.2017.10.014. Epub 2017 Nov 10. [PubMed:29103900 ]
- Hasegawa T, Yoshitome K, Fujihara T, Santoso M, Aziz MA: Characteristic Changes in the Aroma Profile of Patchouli Depending on Manufacturing Process. J Oleo Sci. 2017 Aug 1;66(8):863-869. doi: 10.5650/jos.ess17002. Epub 2017 Jul 12. [PubMed:28701650 ]
- Elshamy AI, El-Kashak WA, Abdallah HM, Farrag AH, Nassar MI: Soft coral Cespitularia stolonifera: New cytotoxic ceramides and gastroprotective activity. Chin J Nat Med. 2017 Feb;15(2):105-114. doi: 10.1016/S1875-5364(17)30026-2. [PubMed:28284424 ]
- Mei WL, Zeng YB, Liu J, Dai HF: [GC-MS analysis of volatile constituents from five different kinds of Chinese eaglewood]. Zhong Yao Cai. 2007 May;30(5):551-5. [PubMed:17727060 ]
- LOTUS database [Link]
|
|---|