Np mrd loader

Record Information
Version1.0
Created at2022-09-07 05:54:34 UTC
Updated at2022-09-07 05:54:34 UTC
NP-MRD IDNP0244987
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1r,5r,9r)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0¹,⁵]dodec-2-ene
Description(1R,5R,9R)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0¹,⁵]Dodec-2-ene belongs to the class of organic compounds known as oxolanes. These are organic compounds containing an oxolane (tetrahydrofuran) ring, which is a saturated aliphatic five-member ring containing one oxygen and five carbon atoms. (1r,5r,9r)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0¹,⁵]dodec-2-ene is found in Mylia taylorii. It was first documented in 2022 (PMID: 36088123). Based on a literature review a significant number of articles have been published on (1R,5R,9R)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0¹,⁵]Dodec-2-ene (PMID: 36088122) (PMID: 36088121) (PMID: 36088120) (PMID: 36088119) (PMID: 36088116) (PMID: 36088118).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC15H22O
Average Mass218.3400 Da
Monoisotopic Mass218.16707 Da
IUPAC Name(1R,5R,9R)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0^{1,5}]dodec-2-ene
Traditional Name(1R,5R,9R)-2,10,10-trimethyl-6-methylidene-11-oxatricyclo[7.2.1.0^{1,5}]dodec-2-ene
CAS Registry NumberNot Available
SMILES
CC1=CC[C@@H]2C(=C)CC[C@@H]3C[C@]12OC3(C)C
InChI Identifier
InChI=1S/C15H22O/c1-10-5-7-12-9-15(16-14(12,3)4)11(2)6-8-13(10)15/h6,12-13H,1,5,7-9H2,2-4H3/t12-,13-,15+/m1/s1
InChI KeyMGSOIRWVRUQEDG-NFAWXSAZSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Mylia tayloriLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as oxolanes. These are organic compounds containing an oxolane (tetrahydrofuran) ring, which is a saturated aliphatic five-member ring containing one oxygen and five carbon atoms.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassOxolanes
Sub ClassNot Available
Direct ParentOxolanes
Alternative Parents
Substituents
  • Oxolane
  • Oxacycle
  • Ether
  • Dialkyl ether
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.19ChemAxon
pKa (Strongest Basic)-4.2ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area9.23 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity67.23 m³·mol⁻¹ChemAxon
Polarizability26.04 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound162993842
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Xu X, Rothrock MJ Jr, Reeves J, Kumar GD, Mishra A: Using E. coli population to predict foodborne pathogens in pastured poultry farms. Food Microbiol. 2022 Dec;108:104092. doi: 10.1016/j.fm.2022.104092. Epub 2022 Jul 14. [PubMed:36088123 ]
  2. Lanzl MI, Zwietering MH, Abee T, den Besten HMW: Combining enrichment with multiplex real-time PCR leads to faster detection and identification of Campylobacter spp. in food compared to ISO 10272-1:2017. Food Microbiol. 2022 Dec;108:104117. doi: 10.1016/j.fm.2022.104117. Epub 2022 Aug 19. [PubMed:36088122 ]
  3. Cacciatore FA, Maders C, Alexandre B, Barreto Pinilla CM, Brandelli A, da Silva Malheiros P: Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol. 2022 Dec;108:104116. doi: 10.1016/j.fm.2022.104116. Epub 2022 Aug 18. [PubMed:36088121 ]
  4. Liu X, Li Y, Micallef SA: Developmentally related and drought-induced shifts in the kale metabolome limited Salmonella enterica association, providing novel insights to enhance food safety. Food Microbiol. 2022 Dec;108:104113. doi: 10.1016/j.fm.2022.104113. Epub 2022 Aug 18. [PubMed:36088120 ]
  5. Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA: Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol. 2022 Dec;108:104112. doi: 10.1016/j.fm.2022.104112. Epub 2022 Aug 12. [PubMed:36088119 ]
  6. Centeno JA, Lorenzo JM, Carballo J: Effects of autochthonous Kluyveromyces lactis and commercial Enterococcus faecium adjunct cultures on the volatile profile and the sensory characteristics of short-ripened acid-curd Cebreiro cheese. Food Microbiol. 2022 Dec;108:104101. doi: 10.1016/j.fm.2022.104101. Epub 2022 Aug 1. [PubMed:36088116 ]
  7. Chen J, Yang R, Wang Y, Koseki S, Fu L, Wang Y: Inhibitory effect of d-Tryptophan on the spoilage potential of Shewanella baltica and Pseudomonas fluorescens and its potential application in salmon fillet preservation. Food Microbiol. 2022 Dec;108:104104. doi: 10.1016/j.fm.2022.104104. Epub 2022 Aug 9. [PubMed:36088118 ]
  8. Wicaksono WA, Buko A, Kusstatscher P, Sinkkonen A, Laitinen OH, Virtanen SM, Hyoty H, Cernava T, Berg G: Modulation of the food microbiome by apple fruit processing. Food Microbiol. 2022 Dec;108:104103. doi: 10.1016/j.fm.2022.104103. Epub 2022 Aug 4. [PubMed:36088117 ]
  9. Jyung S, Kang JW, Kang DH: L. monocytogens exhibited less cell membrane damage, lipid peroxidation, and intracellular reactive oxygen species accumulation after plasma-activated water treatment compared to E. coli O157:H7 and S. Typhimurium. Food Microbiol. 2022 Dec;108:104098. doi: 10.1016/j.fm.2022.104098. Epub 2022 Jul 30. [PubMed:36088114 ]
  10. Parafati L, Restuccia C, Cirvilleri G: Efficacy and mechanism of action of food isolated yeasts in the control of Aspergillus flavus growth on pistachio nuts. Food Microbiol. 2022 Dec;108:104100. doi: 10.1016/j.fm.2022.104100. Epub 2022 Aug 6. [PubMed:36088115 ]
  11. LOTUS database [Link]