Np mrd loader

Record Information
Version1.0
Created at2022-09-06 23:50:16 UTC
Updated at2022-09-06 23:50:16 UTC
NP-MRD IDNP0240104
Secondary Accession NumbersNone
Natural Product Identification
Common Name[(5-{[1-(5,6-dihydroxy-6-methylheptan-2-yl)-7,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-1,3-dihydroxy-3-methyl-5-oxopentylidene)amino]acetic acid
Description2-[(5-{[14-(5,6-Dihydroxy-6-methylheptan-2-yl)-5,16-dihydroxy-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]Heptadec-1(10)-en-4-yl]oxy}-1,3-dihydroxy-3-methyl-5-oxopentylidene)amino]acetic acid belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. [(5-{[1-(5,6-dihydroxy-6-methylheptan-2-yl)-7,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-1,3-dihydroxy-3-methyl-5-oxopentylidene)amino]acetic acid is found in Hypholoma fasciculare. It was first documented in 2022 (PMID: 36088123). Based on a literature review a significant number of articles have been published on 2-[(5-{[14-(5,6-dihydroxy-6-methylheptan-2-yl)-5,16-dihydroxy-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]Heptadec-1(10)-en-4-yl]oxy}-1,3-dihydroxy-3-methyl-5-oxopentylidene)amino]acetic acid (PMID: 36088122) (PMID: 36088121) (PMID: 36088120) (PMID: 36088119) (PMID: 36088110) (PMID: 36088109).
Structure
Thumb
Synonyms
ValueSource
2-[(5-{[14-(5,6-dihydroxy-6-methylheptan-2-yl)-5,16-dihydroxy-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0,.0,]heptadec-1(10)-en-4-yl]oxy}-1,3-dihydroxy-3-methyl-5-oxopentylidene)amino]acetateGenerator
Chemical FormulaC38H63NO10
Average Mass693.9190 Da
Monoisotopic Mass693.44520 Da
IUPAC NameNot Available
Traditional NameNot Available
CAS Registry NumberNot Available
SMILES
CC(CCC(O)C(C)(C)O)C1CCC2(C)C3=C(CC(O)C12C)C1(C)CC(OC(=O)CC(C)(O)CC(O)=NCC(O)=O)C(O)C(C)(C)C1CC3
InChI Identifier
InChI=1S/C38H63NO10/c1-21(10-13-27(40)34(4,5)47)22-14-15-37(8)23-11-12-26-33(2,3)32(46)25(17-36(26,7)24(23)16-28(41)38(22,37)9)49-31(45)19-35(6,48)18-29(42)39-20-30(43)44/h21-22,25-28,32,40-41,46-48H,10-20H2,1-9H3,(H,39,42)(H,43,44)
InChI KeyLILVUFKXDGZLEC-UHFFFAOYSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Hypholoma fasciculareLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTriterpenoids
Direct ParentTriterpenoids
Alternative Parents
Substituents
  • Triterpenoid
  • Tetrahydroxy bile acid, alcohol, or derivatives
  • 25-hydroxysteroid
  • 24-hydroxysteroid
  • Hydroxy bile acid, alcohol, or derivatives
  • Bile acid, alcohol, or derivatives
  • Steroid ester
  • 12-hydroxysteroid
  • 3-hydroxysteroid
  • Hydroxysteroid
  • Steroid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-alpha-amino acid
  • Alpha-amino acid or derivatives
  • Fatty acyl
  • Dicarboxylic acid or derivatives
  • N-acyl-amine
  • Fatty amide
  • Cyclic alcohol
  • Tertiary alcohol
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxylic acid ester
  • Carboxamide group
  • Carboxylic acid
  • Carboxylic acid derivative
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organic nitrogen compound
  • Carbonyl group
  • Organopnictogen compound
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound162907121
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Xu X, Rothrock MJ Jr, Reeves J, Kumar GD, Mishra A: Using E. coli population to predict foodborne pathogens in pastured poultry farms. Food Microbiol. 2022 Dec;108:104092. doi: 10.1016/j.fm.2022.104092. Epub 2022 Jul 14. [PubMed:36088123 ]
  2. Lanzl MI, Zwietering MH, Abee T, den Besten HMW: Combining enrichment with multiplex real-time PCR leads to faster detection and identification of Campylobacter spp. in food compared to ISO 10272-1:2017. Food Microbiol. 2022 Dec;108:104117. doi: 10.1016/j.fm.2022.104117. Epub 2022 Aug 19. [PubMed:36088122 ]
  3. Cacciatore FA, Maders C, Alexandre B, Barreto Pinilla CM, Brandelli A, da Silva Malheiros P: Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol. 2022 Dec;108:104116. doi: 10.1016/j.fm.2022.104116. Epub 2022 Aug 18. [PubMed:36088121 ]
  4. Liu X, Li Y, Micallef SA: Developmentally related and drought-induced shifts in the kale metabolome limited Salmonella enterica association, providing novel insights to enhance food safety. Food Microbiol. 2022 Dec;108:104113. doi: 10.1016/j.fm.2022.104113. Epub 2022 Aug 18. [PubMed:36088120 ]
  5. Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA: Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol. 2022 Dec;108:104112. doi: 10.1016/j.fm.2022.104112. Epub 2022 Aug 12. [PubMed:36088119 ]
  6. Soare C, Mazeri S, McAteer S, McNeilly TN, Seguino A, Chase-Topping M: The microbial condition of Scottish wild deer carcasses collected for human consumption and the hygiene risk factors associated with Escherichia coli and total coliforms contamination. Food Microbiol. 2022 Dec;108:104102. doi: 10.1016/j.fm.2022.104102. Epub 2022 Aug 7. [PubMed:36088110 ]
  7. Zhao Y, Liu S, Han X, Zhou Z, Mao J: Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation. Food Microbiol. 2022 Dec;108:104091. doi: 10.1016/j.fm.2022.104091. Epub 2022 Jul 12. [PubMed:36088109 ]
  8. Centeno JA, Lorenzo JM, Carballo J: Effects of autochthonous Kluyveromyces lactis and commercial Enterococcus faecium adjunct cultures on the volatile profile and the sensory characteristics of short-ripened acid-curd Cebreiro cheese. Food Microbiol. 2022 Dec;108:104101. doi: 10.1016/j.fm.2022.104101. Epub 2022 Aug 1. [PubMed:36088116 ]
  9. Liu MK, Liu CY, Tian XH, Feng J, Guo XJ, Liu Y, Zhang XY, Tang YM: Bioremediation of degraded pit mud by indigenous microbes for Baijiu production. Food Microbiol. 2022 Dec;108:104096. doi: 10.1016/j.fm.2022.104096. Epub 2022 Aug 4. [PubMed:36088112 ]
  10. Chen J, Yang R, Wang Y, Koseki S, Fu L, Wang Y: Inhibitory effect of d-Tryptophan on the spoilage potential of Shewanella baltica and Pseudomonas fluorescens and its potential application in salmon fillet preservation. Food Microbiol. 2022 Dec;108:104104. doi: 10.1016/j.fm.2022.104104. Epub 2022 Aug 9. [PubMed:36088118 ]
  11. Wicaksono WA, Buko A, Kusstatscher P, Sinkkonen A, Laitinen OH, Virtanen SM, Hyoty H, Cernava T, Berg G: Modulation of the food microbiome by apple fruit processing. Food Microbiol. 2022 Dec;108:104103. doi: 10.1016/j.fm.2022.104103. Epub 2022 Aug 4. [PubMed:36088117 ]
  12. Jyung S, Kang JW, Kang DH: L. monocytogens exhibited less cell membrane damage, lipid peroxidation, and intracellular reactive oxygen species accumulation after plasma-activated water treatment compared to E. coli O157:H7 and S. Typhimurium. Food Microbiol. 2022 Dec;108:104098. doi: 10.1016/j.fm.2022.104098. Epub 2022 Jul 30. [PubMed:36088114 ]
  13. Parafati L, Restuccia C, Cirvilleri G: Efficacy and mechanism of action of food isolated yeasts in the control of Aspergillus flavus growth on pistachio nuts. Food Microbiol. 2022 Dec;108:104100. doi: 10.1016/j.fm.2022.104100. Epub 2022 Aug 6. [PubMed:36088115 ]
  14. Tofalo R, Perpetuini G, Rossetti AP, Gaggiotti S, Piva A, Olivastri L, Cichelli A, Compagnone D, Arfelli G: Impact of Saccharomyces cerevisiae and non-Saccharomyces yeasts to improve traditional sparkling wines production. Food Microbiol. 2022 Dec;108:104097. doi: 10.1016/j.fm.2022.104097. Epub 2022 Jul 20. [PubMed:36088113 ]
  15. Taibi A, Diop A, Leneveu-Jenvrin C, Broussolle V, Lortal S, Meot JM, Soria C, Chillet M, Lechaudel M, Minier J, Constancias F, Remize F, Meile JC: Dynamics of bacterial and fungal communities of mango: From the tree to ready-to-Eat products. Food Microbiol. 2022 Dec;108:104095. doi: 10.1016/j.fm.2022.104095. Epub 2022 Jul 18. [PubMed:36088111 ]
  16. LOTUS database [Link]