| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-06 13:28:50 UTC |
|---|
| Updated at | 2022-09-06 13:28:50 UTC |
|---|
| NP-MRD ID | NP0232292 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 20,25-dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene |
|---|
| Description | 20,25-Dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]Hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. 20,25-dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene is found in Guatteria boliviana. 20,25-Dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]Hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene is a very strong basic compound (based on its pKa). |
|---|
| Structure | COC1=CC2CCN=C3CC4=CC=C(OC5=CC=CC(CC6NCCC7=CC(OC)=C(OC(=C1)C23)C=C67)=C5)C=C4 InChI=1S/C34H34N2O4/c1-37-27-17-24-11-13-36-30-15-21-6-8-25(9-7-21)39-26-5-3-4-22(14-26)16-29-28-20-32(40-33(19-27)34(24)30)31(38-2)18-23(28)10-12-35-29/h3-9,14,17-20,24,29,34-35H,10-13,15-16H2,1-2H3 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C34H34N2O4 |
|---|
| Average Mass | 534.6560 Da |
|---|
| Monoisotopic Mass | 534.25186 Da |
|---|
| IUPAC Name | 20,25-dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene |
|---|
| Traditional Name | 20,25-dimethoxy-8,23-dioxa-15,30-diazaheptacyclo[22.6.2.2⁹,¹².1³,⁷.1¹⁴,¹⁸.0²⁷,³¹.0²²,³³]hexatriaconta-3(36),4,6,9,11,14,19,21,24,26,31,34-dodecaene |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=CC2CCN=C3CC4=CC=C(OC5=CC=CC(CC6NCCC7=CC(OC)=C(OC(=C1)C23)C=C67)=C5)C=C4 |
|---|
| InChI Identifier | InChI=1S/C34H34N2O4/c1-37-27-17-24-11-13-36-30-15-21-6-8-25(9-7-21)39-26-5-3-4-22(14-26)16-29-28-20-32(40-33(19-27)34(24)30)31(38-2)18-23(28)10-12-35-29/h3-9,14,17-20,24,29,34-35H,10-13,15-16H2,1-2H3 |
|---|
| InChI Key | VQSMHQHVINQAFK-UHFFFAOYSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as lignans, neolignans and related compounds. These are plant products of low molecular weight formed primarily from oxidative coupling of two p-propylphenol moieties. They can also be described as micromolecules with two phenylpropanoid units coupled together. They can be attached in various manners, like C5-C5', C8-C8'. Most known natural lignans are oxidized at C9 and C9´ and, based upon the way in which oxygen is incorporated into the skeleton and on the cyclization patterns, a wide range of lignans of very different structural types can be formed. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lignans, neolignans and related compounds |
|---|
| Class | Not Available |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Lignans, neolignans and related compounds |
|---|
| Alternative Parents | |
|---|
| Substituents | - Oxyneolignan skeleton
- Diaryl ether
- Tetrahydroisoquinoline
- Anisole
- Alkyl aryl ether
- Tetrahydropyridine
- Aralkylamine
- Benzenoid
- Ketimine
- Organoheterocyclic compound
- Organic 1,3-dipolar compound
- Propargyl-type 1,3-dipolar organic compound
- Oxacycle
- Azacycle
- Secondary amine
- Secondary aliphatic amine
- Ether
- Amine
- Organopnictogen compound
- Imine
- Organonitrogen compound
- Organic oxygen compound
- Organooxygen compound
- Organic nitrogen compound
- Hydrocarbon derivative
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|