Np mrd loader

Record Information
Version2.0
Created at2022-09-06 02:13:03 UTC
Updated at2022-09-06 02:13:03 UTC
NP-MRD IDNP0223974
Secondary Accession NumbersNone
Natural Product Identification
Common Name(2s,3r,4s,5s,6r)-2-(4-hydroxy-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
DescriptionLeonuriside belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. (2s,3r,4s,5s,6r)-2-(4-hydroxy-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol is found in Coriandrum sativum, Elsholtzia bodinieri, Embelia ribes, Eupatorium chinense, Laguncularia racemosa, Leonurus japonicus, Morella rubra, Potalia amara, Prunus ssiori and Swertia japonica. (2s,3r,4s,5s,6r)-2-(4-hydroxy-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol was first documented in 2016 (PMID: 27617339). Based on a literature review a small amount of articles have been published on leonuriside (PMID: 34961588) (PMID: 35936100) (PMID: 30549897) (PMID: 30072618).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC14H20O9
Average Mass332.3050 Da
Monoisotopic Mass332.11073 Da
IUPAC Name(2S,3R,4S,5S,6R)-2-(4-hydroxy-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
Traditional Name(2S,3R,4S,5S,6R)-2-(4-hydroxy-2,6-dimethoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
CAS Registry NumberNot Available
SMILES
COC1=CC(O)=CC(OC)=C1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O
InChI Identifier
InChI=1S/C14H20O9/c1-20-7-3-6(16)4-8(21-2)13(7)23-14-12(19)11(18)10(17)9(5-15)22-14/h3-4,9-12,14-19H,5H2,1-2H3/t9-,10-,11+,12-,14+/m1/s1
InChI KeyNOQYJICHFNSIFZ-DIACKHNESA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Coriandrum sativumLOTUS Database
Elsholtzia bodinieriLOTUS Database
Embelia ribesLOTUS Database
Eupatorium chinenseLOTUS Database
Laguncularia racemosaLOTUS Database
Leonurus japonicusLOTUS Database
Morella rubraLOTUS Database
Potalia amaraLOTUS Database
Prunus ssioriLOTUS Database
Swertia japonicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentPhenolic glycosides
Alternative Parents
Substituents
  • Phenolic glycoside
  • Hexose monosaccharide
  • O-glycosyl compound
  • Methoxyphenol
  • Dimethoxybenzene
  • M-dimethoxybenzene
  • 4-alkoxyphenol
  • Anisole
  • Phenoxy compound
  • Phenol ether
  • Methoxybenzene
  • 1-hydroxy-2-unsubstituted benzenoid
  • Alkyl aryl ether
  • Phenol
  • Oxane
  • Monosaccharide
  • Monocyclic benzene moiety
  • Benzenoid
  • Secondary alcohol
  • Organoheterocyclic compound
  • Oxacycle
  • Acetal
  • Ether
  • Polyol
  • Hydrocarbon derivative
  • Alcohol
  • Primary alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-1.2ChemAxon
pKa (Strongest Acidic)9.82ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area138.07 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity75.09 m³·mol⁻¹ChemAxon
Polarizability31.6 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00036467
Chemspider ID23326620
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound14237626
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Xiong Y, Cao XY, Liu BY, Dai YQ, Zhou HJ, He JJ, Gong Y, Wu XW, Tang HB: Exploring the mechanism of Buxue Yimu Pill on hemorrhagic anemia through molecular docking, network pharmacology and experimental validation. Chin J Nat Med. 2021 Dec;19(12):900-911. doi: 10.1016/S1875-5364(21)60104-8. [PubMed:34961588 ]
  2. Kasiotis KM, Baira E, Iosifidou S, Bergele K, Manea-Karga E, Theologidis I, Barmpouni T, Tsipi D, Machera K: Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Front Chem. 2022 Jul 22;10:924881. doi: 10.3389/fchem.2022.924881. eCollection 2022. [PubMed:35936100 ]
  3. Thai TH, Hai NT, Hien NT, Ha CTT, Cuong NT, Binh PT, Dang NH, Dat NT: ytotoxic Constituents of Mallotus microcarpus. Nat Prod Commun. 2017 Mar;12(3):407-408. [PubMed:30549897 ]
  4. Nguyen VB, Wang SL, Nguyen TH, Nguyen MT, Doan CT, Tran TN, Lin ZH, Nguyen QV, Kuo YH, Nguyen AD: Novel Potent Hypoglycemic Compounds from Euonymus laxiflorus Champ. and Their Effect on Reducing Plasma Glucose in an ICR Mouse Model. Molecules. 2018 Aug 2;23(8):1928. doi: 10.3390/molecules23081928. [PubMed:30072618 ]
  5. Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q: Remote Activation of Disarmed Thioglycosides in Latent-Active Glycosylation via Interrupted Pummerer Reaction. J Am Chem Soc. 2016 Oct 12;138(40):13402-13407. doi: 10.1021/jacs.6b08305. Epub 2016 Sep 28. [PubMed:27617339 ]
  6. LOTUS database [Link]