| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-05 18:44:29 UTC |
|---|
| Updated at | 2022-09-05 18:44:29 UTC |
|---|
| NP-MRD ID | NP0218166 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1r,2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate |
|---|
| Description | Aposcopolamine belongs to the class of organic compounds known as styrenes. These are organic compounds containing an ethenylbenzene moiety. (1r,2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate is found in Datura stramonium. (1r,2r,4s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0²,⁴]nonan-7-yl 2-phenylprop-2-enoate was first documented in 2005 (PMID: 18970269). Based on a literature review a small amount of articles have been published on Aposcopolamine (PMID: 28870544) (PMID: 32956608) (PMID: 29808589) (PMID: 22986508). |
|---|
| Structure | CN1C2CC(C[C@@H]1[C@H]1O[C@@H]21)OC(=O)C(=C)C1=CC=CC=C1 InChI=1S/C17H19NO3/c1-10(11-6-4-3-5-7-11)17(19)20-12-8-13-15-16(21-15)14(9-12)18(13)2/h3-7,12-16H,1,8-9H2,2H3/t12?,13-,14?,15-,16+/m1/s1 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C17H19NO3 |
|---|
| Average Mass | 285.3430 Da |
|---|
| Monoisotopic Mass | 285.13649 Da |
|---|
| IUPAC Name | (1R,2R,4S)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-7-yl 2-phenylprop-2-enoate |
|---|
| Traditional Name | (1R,2R,4S)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-7-yl 2-phenylprop-2-enoate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CN1C2CC(C[C@@H]1[C@H]1O[C@@H]21)OC(=O)C(=C)C1=CC=CC=C1 |
|---|
| InChI Identifier | InChI=1S/C17H19NO3/c1-10(11-6-4-3-5-7-11)17(19)20-12-8-13-15-16(21-15)14(9-12)18(13)2/h3-7,12-16H,1,8-9H2,2H3/t12?,13-,14?,15-,16+/m1/s1 |
|---|
| InChI Key | JJNVDCBKBUSUII-IHTQCXBNSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as styrenes. These are organic compounds containing an ethenylbenzene moiety. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Benzenoids |
|---|
| Class | Benzene and substituted derivatives |
|---|
| Sub Class | Styrenes |
|---|
| Direct Parent | Styrenes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Styrene
- Morpholine
- Oxazinane
- Piperidine
- N-alkylpyrrolidine
- Pyrrolidine
- Enoate ester
- Alpha,beta-unsaturated carboxylic ester
- Amino acid or derivatives
- Tertiary aliphatic amine
- Tertiary amine
- Carboxylic acid ester
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Carboxylic acid derivative
- Dialkyl ether
- Oxirane
- Ether
- Monocarboxylic acid or derivatives
- Hydrocarbon derivative
- Organic nitrogen compound
- Organonitrogen compound
- Organooxygen compound
- Organic oxygen compound
- Organic oxide
- Carbonyl group
- Amine
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Marin-Saez J, Romero-Gonzalez R, Garrido Frenich A: Multi-analysis determination of tropane alkaloids in cereals and solanaceaes seeds by liquid chromatography coupled to single stage Exactive-Orbitrap. J Chromatogr A. 2017 Oct 6;1518:46-58. doi: 10.1016/j.chroma.2017.08.052. Epub 2017 Aug 25. [PubMed:28870544 ]
- Chen H, Chen Y, Wang H, Du P, Han F, Zhang H: Analysis of scopolamine and its eighteen metabolites in rat urine by liquid chromatography-tandem mass spectrometry. Talanta. 2005 Oct 31;67(5):984-91. doi: 10.1016/j.talanta.2005.04.026. [PubMed:18970269 ]
- Yi P, Zhang Z, Huang S, Huang J, Peng W, Yang J: Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer's disease. Pharm Biol. 2020 Dec;58(1):932-943. doi: 10.1080/13880209.2020.1817103. [PubMed:32956608 ]
- Marin-Saez J, Romero-Gonzalez R, Garrido Frenich A, Egea-Gonzalez FJ: Screening of drugs and homeopathic products from Atropa belladonna seed extracts: Tropane alkaloids determination and untargeted analysis. Drug Test Anal. 2018 Oct;10(10):1579-1589. doi: 10.1002/dta.2416. Epub 2018 Jun 29. [PubMed:29808589 ]
- Tomasini-Johansson BR, Johnson IA, Hoffmann FM, Mosher DF: Quantitative microtiter fibronectin fibrillogenesis assay: use in high throughput screening for identification of inhibitor compounds. Matrix Biol. 2012 Jul;31(6):360-7. doi: 10.1016/j.matbio.2012.07.003. Epub 2012 Aug 6. [PubMed:22986508 ]
- LOTUS database [Link]
|
|---|