Np mrd loader

Record Information
Version2.0
Created at2022-09-05 16:52:20 UTC
Updated at2022-09-05 16:52:20 UTC
NP-MRD IDNP0216774
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1s,3s,4r,6s,8s,9r,10r,13r,14r)-3,4,6,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl propanoate
DescriptionAsebotoxin I, also known as acebotoxin III, belongs to the class of organic compounds known as leucothol and grayanotoxane diterpenoids. These are diterpenoids with a structure based either on the leucothol or the grayanotoxane skeleton. (1s,3s,4r,6s,8s,9r,10r,13r,14r)-3,4,6,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl propanoate is found in Pieris japonica. (1s,3s,4r,6s,8s,9r,10r,13r,14r)-3,4,6,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl propanoate was first documented in 1984 (PMID: 6513201). Based on a literature review very few articles have been published on Asebotoxin I.
Structure
Thumb
Synonyms
ValueSource
Acebotoxin IIIMeSH
Asebotoxin IIIMeSH
Chemical FormulaC23H38O7
Average Mass426.5500 Da
Monoisotopic Mass426.26175 Da
IUPAC Name(1S,3S,4R,6S,8S,9R,10R,13R,14R)-3,4,6,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0^{1,10}.0^{4,8}]hexadecan-16-yl propanoate
Traditional Name(1S,3S,4R,6S,8S,9R,10R,13R,14R)-3,4,6,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0^{1,10}.0^{4,8}]hexadecan-16-yl propanoate
CAS Registry NumberNot Available
SMILES
CCC(=O)OC1[C@H]2CC[C@@H]3[C@@]1(C[C@@]2(C)O)C[C@H](O)[C@@]1(O)[C@@H](C[C@H](O)C1(C)C)[C@]3(C)O
InChI Identifier
InChI=1S/C23H38O7/c1-6-17(26)30-18-12-7-8-13-21(5,28)14-9-15(24)19(2,3)23(14,29)16(25)10-22(13,18)11-20(12,4)27/h12-16,18,24-25,27-29H,6-11H2,1-5H3/t12-,13+,14+,15+,16+,18?,20-,21-,22+,23+/m1/s1
InChI KeyUVIOAKNWFGGRCJ-FWACMMOASA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Pieris japonicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as leucothol and grayanotoxane diterpenoids. These are diterpenoids with a structure based either on the leucothol or the grayanotoxane skeleton.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassDiterpenoids
Direct ParentLeucothol and grayanotoxane diterpenoids
Alternative Parents
Substituents
  • Grayanotoxane diterpenoid
  • Tertiary alcohol
  • Cyclic alcohol
  • Secondary alcohol
  • Carboxylic acid ester
  • Polyol
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP-0.073ChemAxon
pKa (Strongest Acidic)13.06ChemAxon
pKa (Strongest Basic)-2.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area127.45 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity108.73 m³·mol⁻¹ChemAxon
Polarizability46.15 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00003404
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound135929163
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Hotta Y, Ando H, Shirai N, Sakakibara J, Takeya K: Relationship between the inotropy speeds in guinea-pig myocardium and lipophilic character of cardenolides and ericaceous toxins. Jpn J Pharmacol. 1984 Oct;36(2):205-15. doi: 10.1254/jjp.36.205. [PubMed:6513201 ]
  2. LOTUS database [Link]