Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-05 16:22:08 UTC |
---|
Updated at | 2022-09-05 16:22:09 UTC |
---|
NP-MRD ID | NP0216418 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (11bs)-1h,2h,3h,5h,6h,11h,11bh-indolo[3,2-g]indolizine |
---|
Description | Harmicine, also known as (R)-harmicine, belongs to the class of organic compounds known as beta carbolines. Beta carbolines are compounds containing a 9H-pyrido[3,4-b]indole moiety. (11bs)-1h,2h,3h,5h,6h,11h,11bh-indolo[3,2-g]indolizine is found in Kopsia griffithii. (11bs)-1h,2h,3h,5h,6h,11h,11bh-indolo[3,2-g]indolizine was first documented in 2019 (PMID: 30895973). Based on a literature review a small amount of articles have been published on Harmicine (PMID: 34581483) (PMID: 34274829) (PMID: 32584573) (PMID: 32558575). |
---|
Structure | C1C[C@@H]2N(C1)CCC1=C2NC2=CC=CC=C12 InChI=1S/C14H16N2/c1-2-5-12-10(4-1)11-7-9-16-8-3-6-13(16)14(11)15-12/h1-2,4-5,13,15H,3,6-9H2/t13-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(R)-Harmicine | MeSH |
|
---|
Chemical Formula | C14H16N2 |
---|
Average Mass | 212.2960 Da |
---|
Monoisotopic Mass | 212.13135 Da |
---|
IUPAC Name | (2S)-6,16-diazatetracyclo[7.7.0.0^{2,6}.0^{10,15}]hexadeca-1(9),10,12,14-tetraene |
---|
Traditional Name | (2S)-6,16-diazatetracyclo[7.7.0.0^{2,6}.0^{10,15}]hexadeca-1(9),10,12,14-tetraene |
---|
CAS Registry Number | Not Available |
---|
SMILES | C1C[C@@H]2N(C1)CCC1=C2NC2=CC=CC=C12 |
---|
InChI Identifier | InChI=1S/C14H16N2/c1-2-5-12-10(4-1)11-7-9-16-8-3-6-13(16)14(11)15-12/h1-2,4-5,13,15H,3,6-9H2/t13-/m0/s1 |
---|
InChI Key | LXJWBHIVLXMHDZ-ZDUSSCGKSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as beta carbolines. Beta carbolines are compounds containing a 9H-pyrido[3,4-b]indole moiety. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Indoles and derivatives |
---|
Sub Class | Pyridoindoles |
---|
Direct Parent | Beta carbolines |
---|
Alternative Parents | |
---|
Substituents | - Beta-carboline
- 3-alkylindole
- Indole
- Aralkylamine
- Benzenoid
- N-alkylpyrrolidine
- Heteroaromatic compound
- Pyrrole
- Pyrrolidine
- Tertiary aliphatic amine
- Tertiary amine
- Azacycle
- Organonitrogen compound
- Hydrocarbon derivative
- Organic nitrogen compound
- Amine
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Liang L, Zhou S, Zhang W, Tong R: Catalytic Asymmetric Alkynylation of 3,4-Dihydro-beta-carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl. 2021 Nov 15;60(47):25135-25142. doi: 10.1002/anie.202112383. Epub 2021 Oct 20. [PubMed:34581483 ]
- Marinovic M, Poje G, Perkovic I, Fontinha D, Prudencio M, Held J, Pessanha de Carvalho L, Tandaric T, Vianello R, Rajic Z: Further investigation of harmicines as novel antiplasmodial agents: Synthesis, structure-activity relationship and insight into the mechanism of action. Eur J Med Chem. 2021 Nov 15;224:113687. doi: 10.1016/j.ejmech.2021.113687. Epub 2021 Jul 5. [PubMed:34274829 ]
- Habel D, Nair DS, Kallingathodi Z, Mohan C, Pillai SM, Nair RR, Thomas G, Haleema S, Gopinath C, Abdul RV, Fritz M, Puente AR, Johnson JL, Polavarapu PL, Ibnusaud I: Natural Product-Derived Chiral Pyrrolidine-2,5-diones, Their Molecular Structures and Conversion to Pharmacologically Important Skeletons. J Nat Prod. 2020 Jul 24;83(7):2178-2190. doi: 10.1021/acs.jnatprod.0c00211. Epub 2020 Jun 25. [PubMed:32584573 ]
- Nalikezhathu A, Cherepakhin V, Williams TJ: Ruthenium Catalyzed Tandem Pictet-Spengler Reaction. Org Lett. 2020 Jul 2;22(13):4979-4984. doi: 10.1021/acs.orglett.0c01485. Epub 2020 Jun 19. [PubMed:32558575 ]
- Peczkowski GR, Craven PGE, Stead D, Simpkins NS: 2,7-Diazabicyclo[2.2.1]heptanes: novel asymmetric access and controlled bridge-opening. Chem Commun (Camb). 2019 Apr 4;55(29):4214-4217. doi: 10.1039/c8cc10263e. [PubMed:30895973 ]
- LOTUS database [Link]
|
---|