Np mrd loader

Record Information
Version2.0
Created at2022-09-05 15:02:47 UTC
Updated at2022-09-05 15:02:47 UTC
NP-MRD IDNP0215423
Secondary Accession NumbersNone
Natural Product Identification
Common Name4-[(1e)-2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3h-naphtho[2,3-c]furan-1-one
DescriptionHimbacine belongs to the class of organic compounds known as naphthofurans. Naphthofurans are compounds containing a furan ring fused to a naphthalene moiety. Furan is a 5 membered- ring aromatic ring with four carbon and one oxygen atoms. Naphthalene is a polycyclic aromatic hydrocarbon made up of two fused benzene rings. 4-[(1e)-2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3h-naphtho[2,3-c]furan-1-one is found in Galbulimima baccata. 4-[(1e)-2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3h-naphtho[2,3-c]furan-1-one was first documented in 2010 (PMID: 20940295). Based on a literature review a significant number of articles have been published on Himbacine (PMID: 34491059) (PMID: 32691184) (PMID: 29860464) (PMID: 28844401) (PMID: 27366081) (PMID: 26932831).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC22H35NO2
Average Mass345.5270 Da
Monoisotopic Mass345.26678 Da
IUPAC Name4-[(E)-2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-dodecahydronaphtho[2,3-c]furan-1-one
Traditional Name4-[(E)-2-(1,6-dimethylpiperidin-2-yl)ethenyl]-3-methyl-decahydro-3H-naphtho[2,3-c]furan-1-one
CAS Registry NumberNot Available
SMILES
CC1OC(=O)C2CC3CCCCC3C(\C=C\C3CCCC(C)N3C)C12
InChI Identifier
InChI=1S/C22H35NO2/c1-14-7-6-9-17(23(14)3)11-12-19-18-10-5-4-8-16(18)13-20-21(19)15(2)25-22(20)24/h11-12,14-21H,4-10,13H2,1-3H3/b12-11+
InChI KeyFMPNFDSPHNUFOS-VAWYXSNFSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Galbulimima baccataLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as naphthofurans. Naphthofurans are compounds containing a furan ring fused to a naphthalene moiety. Furan is a 5 membered- ring aromatic ring with four carbon and one oxygen atoms. Naphthalene is a polycyclic aromatic hydrocarbon made up of two fused benzene rings.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassNaphthofurans
Sub ClassNot Available
Direct ParentNaphthofurans
Alternative Parents
Substituents
  • Naphthofuran
  • Gamma butyrolactone
  • Piperidine
  • Tetrahydrofuran
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Lactone
  • Tertiary amine
  • Tertiary aliphatic amine
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Oxacycle
  • Azacycle
  • Hydrocarbon derivative
  • Amine
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP4.47ChemAxon
pKa (Strongest Basic)8.96ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area29.54 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity102.27 m³·mol⁻¹ChemAxon
Polarizability41.51 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00002343
Chemspider ID4508517
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkHimbacine
METLIN IDNot Available
PubChem Compound5351501
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Chaudhary NK, Taylor WC, Mander LN, Karuso P: Isolation and Structure Elucidation of Additional Alkaloids from the Tropical Rainforest Tree Galbulimima baccata. J Nat Prod. 2021 Sep 24;84(9):2525-2535. doi: 10.1021/acs.jnatprod.1c00537. Epub 2021 Sep 7. [PubMed:34491059 ]
  2. Chen Y, Gao F, Zheng G, Gao S: Enantioselective synthesis of a chiral intermediate of himbacine analogs by Burkholderia cepacia lipase A. Biotechnol Lett. 2020 Dec;42(12):2643-2651. doi: 10.1007/s10529-020-02969-z. Epub 2020 Jul 20. [PubMed:32691184 ]
  3. Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD: Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):2778-2791. doi: 10.1167/iovs.17-22562. [PubMed:29860464 ]
  4. Sugiyama K, Kawanishi S, Oki Y, Kamiya M, Hanada R, Egi M, Akai S: Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine. Bioorg Med Chem. 2018 Apr 1;26(7):1378-1386. doi: 10.1016/j.bmc.2017.08.019. Epub 2017 Aug 16. [PubMed:28844401 ]
  5. Cheng JW: Impact of selective platelet inhibition in reducing cardiovascular risk - role of vorapaxar. Vasc Health Risk Manag. 2016 Jun 14;12:263-8. doi: 10.2147/VHRM.S81342. eCollection 2016. [PubMed:27366081 ]
  6. Knight E, Robinson E, Smoktunowicz N, Chambers RC, Aliev AE, Inglis GG, Chudasama V, Caddick S: Synthesis of novel and potent vorapaxar analogues. Org Biomol Chem. 2016 Mar 28;14(12):3264-74. doi: 10.1039/c5ob02541a. [PubMed:26932831 ]
  7. Tantry US, Liu F, Chen G, Gurbel PA: Vorapaxar in the secondary prevention of atherothrombosis. Expert Rev Cardiovasc Ther. 2015 Dec;13(12):1293-305. doi: 10.1586/14779072.2015.1109447. Epub 2015 Nov 12. [PubMed:26559689 ]
  8. Riddy DM, Valant C, Rueda P, Charman WN, Sexton PM, Summers RJ, Christopoulos A, Langmead CJ: Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Mol Pharmacol. 2015 Oct;88(4):779-90. doi: 10.1124/mol.115.100545. Epub 2015 Aug 4. [PubMed:26243731 ]
  9. Authors unspecified: Retraction of "Biomimetic Total Synthesis of Himbacine". Org Lett. 2015 Jun 19;17(12):3190. doi: 10.1021/acs.orglett.5b01596. [PubMed:26087894 ]
  10. Rivas-Ramirez P, Cadaveira-Mosquera A, Lamas JA, Reboreda A: Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur J Neurosci. 2015 Jul;42(2):1797-807. doi: 10.1111/ejn.12930. Epub 2015 May 19. [PubMed:25899939 ]
  11. Diaz-Ricart M, Escolar G: Vorapaxar for the reduction of atherothrombotic events. Drugs Today (Barc). 2014 Nov;50(11):747-56. doi: 10.1358/dot.2014.50.11.2225852. [PubMed:25525635 ]
  12. Chelliah MV, Eagen K, Guo Z, Chackalamannil S, Xia Y, Tsai H, Greenlee WJ, Ahn HS, Kurowski S, Boykow G, Hsieh Y, Chintala M: Himbacine-derived thrombin receptor antagonists: c7-spirocyclic analogues of vorapaxar. ACS Med Chem Lett. 2014 Mar 11;5(5):561-5. doi: 10.1021/ml500008w. eCollection 2014 May 8. [PubMed:24900880 ]
  13. Chelliah MV, Chackalamannil S, Xia Y, Greenlee WJ, Ahn HS, Kurowski S, Boykow G, Hsieh Y, Chintala M: Himbacine-derived thrombin receptor antagonists: c7-aminomethyl and c9a-hydroxy analogues of vorapaxar. ACS Med Chem Lett. 2013 Dec 18;5(2):183-7. doi: 10.1021/ml400452v. eCollection 2014 Feb 13. [PubMed:24900795 ]
  14. Chen SR, Chen H, Yuan WX, Wess J, Pan HL: Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice. J Biol Chem. 2014 May 16;289(20):14321-30. doi: 10.1074/jbc.M114.550384. Epub 2014 Apr 2. [PubMed:24695732 ]
  15. Du W, Guo Y, Yuan W: [Role of muscarinic cholinergic receptor subtypes in regulating glutamatergic synaptic transmission in rat spinal dorsal horn]. Nan Fang Yi Ke Da Xue Xue Bao. 2013 Jun;33(6):838-41. [PubMed:23803193 ]
  16. Chelliah MV, Chackalamannil S, Xia Y, Eagen K, Greenlee WJ, Ahn HS, Agans-Fantuzzi J, Boykow G, Hsieh Y, Bryant M, Chan TM, Chintala M: Discovery of nor-seco himbacine analogs as thrombin receptor antagonists. Bioorg Med Chem Lett. 2012 Apr 1;22(7):2544-9. doi: 10.1016/j.bmcl.2012.01.138. Epub 2012 Feb 16. [PubMed:22405832 ]
  17. White CW, Short JL, Haynes JM, Matsui M, Ventura S: Contractions of the mouse prostate elicited by acetylcholine are mediated by M(3) muscarinic receptors. J Pharmacol Exp Ther. 2011 Dec;339(3):870-7. doi: 10.1124/jpet.111.186841. Epub 2011 Sep 1. [PubMed:21885618 ]
  18. Cao XH, Byun HS, Chen SR, Pan HL: Diabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons. J Neurochem. 2011 Nov;119(3):594-603. doi: 10.1111/j.1471-4159.2011.07456.x. Epub 2011 Sep 21. [PubMed:21883220 ]
  19. Gonzalez JC, Albinana E, Baldelli P, Garcia AG, Hernandez-Guijo JM: Presynaptic muscarinic receptor subtypes involved in the enhancement of spontaneous GABAergic postsynaptic currents in hippocampal neurons. Eur J Neurosci. 2011 Jan;33(1):69-81. doi: 10.1111/j.1460-9568.2010.07475.x. Epub 2010 Nov 23. [PubMed:21091801 ]
  20. Chen SR, Chen H, Yuan WX, Wess J, Pan HL: Dynamic control of glutamatergic synaptic input in the spinal cord by muscarinic receptor subtypes defined using knockout mice. J Biol Chem. 2010 Dec 24;285(52):40427-37. doi: 10.1074/jbc.M110.176966. Epub 2010 Oct 12. [PubMed:20940295 ]
  21. LOTUS database [Link]