Record Information |
---|
Version | 2.0 |
---|
Created at | 2022-09-05 09:59:35 UTC |
---|
Updated at | 2022-09-05 09:59:35 UTC |
---|
NP-MRD ID | NP0211625 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | methyl (1r,12s,19s)-12-ethyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9-tetraene-10-carboxylate |
---|
Description | (-)-Vincadifformine, also known as 6,7-dihydrotabersonine, belongs to the class of organic compounds known as aspidospermatan-type alkaloids. These are tryptophan-derived alkaloids that are derived from the fusion of tryptamine and a terpene unit (generally either 9 or 10 carbons). Aspidospermine and aspidospermidine (along with tabersonine) are the archetypical members of the Aspidosperma alkaloids (-)-vincadifformine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. methyl (1r,12s,19s)-12-ethyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9-tetraene-10-carboxylate is found in Amsonia elliptica, Hunteria umbellata, Kopsia arborea, Melodinus fusiformis, Melodinus suaveolens, Rhazya stricta, Tabernaemontana grandiflora, Strempeliopsis strempelioides, Vallesia antillana and Vinca minor. methyl (1r,12s,19s)-12-ethyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9-tetraene-10-carboxylate was first documented in 2019 (PMID: 31009114). Based on a literature review a small amount of articles have been published on (-)-vincadifformine (PMID: 33255314) (PMID: 35660549) (PMID: 36051302) (PMID: 31678034). |
---|
Structure | CC[C@@]12CCCN3CC[C@@]4([C@H]13)C(NC1=CC=CC=C41)=C(C2)C(=O)OC InChI=1S/C21H26N2O2/c1-3-20-9-6-11-23-12-10-21(19(20)23)15-7-4-5-8-16(15)22-17(21)14(13-20)18(24)25-2/h4-5,7-8,19,22H,3,6,9-13H2,1-2H3/t19-,20-,21-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(5alpha,12beta,19alpha)-2,3-Didehydroaspidospermidine-3-carboxylic acid methyl ester | ChEBI | 6,7-Dihydrotabersonine | ChEBI | Methyl (5S,12R,19S)-2,3-didehydroaspidospermidine-3-carboxylate | ChEBI | Vincadifformine | ChEBI | (5a,12b,19a)-2,3-Didehydroaspidospermidine-3-carboxylate methyl ester | Generator | (5a,12b,19a)-2,3-Didehydroaspidospermidine-3-carboxylic acid methyl ester | Generator | (5alpha,12beta,19alpha)-2,3-Didehydroaspidospermidine-3-carboxylate methyl ester | Generator | (5Α,12β,19α)-2,3-didehydroaspidospermidine-3-carboxylate methyl ester | Generator | (5Α,12β,19α)-2,3-didehydroaspidospermidine-3-carboxylic acid methyl ester | Generator | Methyl (5S,12R,19S)-2,3-didehydroaspidospermidine-3-carboxylic acid | Generator |
|
---|
Chemical Formula | C21H26N2O2 |
---|
Average Mass | 338.4510 Da |
---|
Monoisotopic Mass | 338.19943 Da |
---|
IUPAC Name | methyl (1R,12S,19S)-12-ethyl-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2,4,6,9-tetraene-10-carboxylate |
---|
Traditional Name | methyl (1R,12S,19S)-12-ethyl-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2,4,6,9-tetraene-10-carboxylate |
---|
CAS Registry Number | Not Available |
---|
SMILES | CC[C@@]12CCCN3CC[C@@]4([C@H]13)C(NC1=CC=CC=C41)=C(C2)C(=O)OC |
---|
InChI Identifier | InChI=1S/C21H26N2O2/c1-3-20-9-6-11-23-12-10-21(19(20)23)15-7-4-5-8-16(15)22-17(21)14(13-20)18(24)25-2/h4-5,7-8,19,22H,3,6,9-13H2,1-2H3/t19-,20-,21-/m0/s1 |
---|
InChI Key | GIGFIWJRTMBSRP-ACRUOGEOSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as aspidospermatan-type alkaloids. These are tryptophan-derived alkaloids that are derived from the fusion of tryptamine and a terpene unit (generally either 9 or 10 carbons). Aspidospermine and aspidospermidine (along with tabersonine) are the archetypical members of the Aspidosperma alkaloids. |
---|
Kingdom | Organic compounds |
---|
Super Class | Alkaloids and derivatives |
---|
Class | Aspidospermatan-type alkaloids |
---|
Sub Class | Not Available |
---|
Direct Parent | Aspidospermatan-type alkaloids |
---|
Alternative Parents | |
---|
Substituents | - Aspidosperma alkaloid
- Plumeran-type alkaloid
- Carbazole
- Indole or derivatives
- Dihydroindole
- Indolizidine
- Secondary aliphatic/aromatic amine
- Aralkylamine
- Benzenoid
- N-alkylpyrrolidine
- Piperidine
- Vinylogous amide
- Alpha,beta-unsaturated carboxylic ester
- Enoate ester
- Methyl ester
- Pyrrolidine
- Amino acid or derivatives
- Carboxylic acid ester
- Tertiary aliphatic amine
- Tertiary amine
- Monocarboxylic acid or derivatives
- Enamine
- Organoheterocyclic compound
- Carboxylic acid derivative
- Azacycle
- Secondary amine
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Carbonyl group
- Organic oxygen compound
- Organic nitrogen compound
- Amine
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Stander EA, Sepulveda LJ, Duge de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc'h N, Dirks R, O'Connor SE, Atehortua L, Oudin A, Courdavault V: Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules. 2020 Nov 24;10(12). pii: biom10121595. doi: 10.3390/biom10121595. [PubMed:33255314 ]
- Williams D, Qu Y, Simionescu R, De Luca V: The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. Plant J. 2019 Aug;99(4):626-636. doi: 10.1111/tpj.14346. Epub 2019 May 21. [PubMed:31009114 ]
- Williams D, Brzezinski W, Gordon H, De Luca V: Site directed mutagenesis of Catharanthus roseus (+)-vincadifformine 19-hydroxylase (CYP71BY3) results in two distinct enzymatic functions. Phytochemistry. 2022 Sep;201:113265. doi: 10.1016/j.phytochem.2022.113265. Epub 2022 Jun 2. [PubMed:35660549 ]
- Palumbo F, Draga S, Scariolo F, Gabelli G, Sacilotto GB, Gazzola M, Barcaccia G: First genomic insights into the Mandevilla genus. Front Plant Sci. 2022 Aug 16;13:983879. doi: 10.3389/fpls.2022.983879. eCollection 2022. [PubMed:36051302 ]
- Anjali KP, Sangeetha BM, Devi G, Raghunathan R, Dutta S: Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): The compound characterization and functional applications in medicine-a comparative study. J Photochem Photobiol B. 2019 Nov;200:111622. doi: 10.1016/j.jphotobiol.2019.111622. Epub 2019 Sep 10. [PubMed:31678034 ]
- LOTUS database [Link]
|
---|